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Motivation

I Nature of income risk critical for many questions in
economics. E.g.:

• Saving and portfolio allocation
• Consumption and wealth distribution
• Ability to self-insure/welfare
• =⇒ Scope for social insurance and redistribution

I Better datasets and new methods are challenging long held
views about labour income risk
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“Canonical” model of earnings dynamics

I Detrended labor earnings follow a (log-) linear process. E.g.

yit = δi + ηit + εit

ηit = ρηi ,t−1 + vit

with δi , ηi1, vit , εit normally distributed.

I Three main features:
• Age-independence of conditional 2nd and higher moments

• Normality: Shocks are symmetrically distributed + no fat tails
• Linearity: conditional 2nd and higher moments independent of
ηi,t−1
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Earnings do not fit the canonical model
Age-dependence

Data: PSID 1968-92, post-tax, HH residual earnings, age 25-60
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Earnings do not fit the canonical model
Non-linearity and non-normality
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New and active literature

I Non-parametric (+parameter calibration), individual
administrative data, emphasis on non-normality: Guvenen,
Ozkan and Song (2014), Guvenen, Karahan, Ozkan and Song
(2019)

I Semi-parametric, survey household data, emphasis on
non-linear persistence: Arellano, Blundell and Bonhomme
(2017)

I New findings making way in quantitative macro literature:
Golosov, Troshkin and Tsyvinski (2016), McKay (2017),
Kaplan, Moll and Violante (2018), De Nardi, Fella and Paz
Pardo (various), ...
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This talk

1. Estimate state-of the art, flexible, persistent+transitory
process for household, post-tax labor earnings

2. Use a structural life-cycle model to compare the implications
of the flexible vs canonical earnings process for:

• Consumption (and wealth) inequality
• Self-insurance
• Welfare

3. Wage vs earnings changes, family and government insurance

1 and 2 joint with Mariacristina De Nardi and Gonzalo Paz Pardo,
3 ditto + Marike Knoepf and Raun Van Ooijen
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Identifying labor income risk: issues

I Relevant income concept: HH, post-tax labor earnings

I Earnings risk
yit = ηit + εit

• Stemming from the unobservable persistent component ηit
• Non-linearities in ηit process cannot be identified from

autocovariances of yt

I Earnings risk = wage risk + labor supply (choices vs risk)
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A flexible NL but parsimonious model
Arellano, Blundell and Bonhomme (2017)

ηit(q) = Qη(q|ηi ,t−1, ageit)
εit(q) = Qε(q|ageit)
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Estimated NL vs canonical earnings process
Age-dependent second moments Estimates

σtη−E [η|·] σtε
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Estimated NL vs canonical earnings process
Non-normality
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Estimated NL vs canonical earnings process
Nonlinearity

ση ρ(ηit |ηi ,t−1) = Et
∂Qη(q|ηi,t−1,t)
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Study consumption, wealth and welfare
(De Nardi, Fella and Paz Pardo, JEEA forth.)

I So, these earnings dynamics are much richer. Does it matter
for:

• Evolution of consumption inequality over the life cycle

• Households ability to self-insure and welfare

I Use these earnings processes in a quantitative life-cycle model

I Decompose the contribution of the different features of the
NL earnings process
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Model implications

14



OLG model, key features

I Ex-ante identical agents, work 25-60, retirement 61-86

I CRRA preferences

I Inelastic labor supply

I Single risk-free asset, no borrowing

I Infinitely-lived government, old age Social Security

I Earnings follow, alternatively, the two empirical processes
described

• β recalibrated to match 3.1 wealth/income ratio

15



OLG model, key features

I Ex-ante identical agents, work 25-60, retirement 61-86

I CRRA preferences

I Inelastic labor supply

I Single risk-free asset, no borrowing

I Infinitely-lived government, old age Social Security
I Earnings follow, alternatively, the two empirical processes

described
• β recalibrated to match 3.1 wealth/income ratio

15



Consumption implications
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Variance of log consumption, data and models
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CEX Data
Canonical
NL process

I Benchmark generates too large increase by age.
I NL process generates substantially lower growth and captures

(until age 47) non-monotonicity

I Very hard to match without HIP (Guvenen 2007; Huggett,
Ventura and Yaron 2011)
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Opening the black box
Age-dependent second moments
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Opening the black box
Age-dependent moments + non-normality
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Age-dependent moments + non-normality
Mechanism
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Opening the black box
Full NL
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Self-insurance and welfare
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BPP insurance coefficients

I Blundell, Pistaferri and Preston (2008): Fraction of earning
shock x = η, ε not reflected in consumption response

φx = 1− cov(∆cit , xit)

var(xit)

I Model true coefficients: earnings shocks are observed

I In the data, BPP identification (assuming “canonical”
process):

φη = 1−
cov(∆cit , yi ,t+1 − yi .t−2)

cov(∆yit , yi ,t+1 − yi ,t−2)
, φε = 1−

cov(∆cit ,∆yi ,t+1)

cov(∆yi ,t ,∆yi ,t+1)

23



BPP insurance coefficients

I Blundell, Pistaferri and Preston (2008): Fraction of earning
shock x = η, ε not reflected in consumption response

φx = 1− cov(∆cit , xit)

var(xit)

I Model true coefficients: earnings shocks are observed

I In the data, BPP identification (assuming “canonical”
process):

φη = 1−
cov(∆cit , yi ,t+1 − yi .t−2)

cov(∆yit , yi ,t+1 − yi ,t−2)
, φε = 1−

cov(∆cit ,∆yi ,t+1)

cov(∆yi ,t ,∆yi ,t+1)

23



BPP insurance coefficients

I Blundell, Pistaferri and Preston (2008): Fraction of earning
shock x = η, ε not reflected in consumption response

φx = 1− cov(∆cit , xit)

var(xit)

I Model true coefficients: earnings shocks are observed

I In the data, BPP identification (assuming “canonical”
process):

φη = 1−
cov(∆cit , yi ,t+1 − yi .t−2)

cov(∆yit , yi ,t+1 − yi ,t−2)
, φε = 1−

cov(∆cit ,∆yi ,t+1)

cov(∆yi ,t ,∆yi ,t+1)

23



BPP insurance coefficients

Process/Coefficients ψp
BPP ψtr

BPP ψp ψtr

Data: BPP (2008)
Canonical 0.36 0.95 – –
(S.E) (0.09) (0.04)

Model
Canonical 0.14 0.88

Nonlinear process 0.43 0.81
Normal, age-dependent 0.41 0.82
Non-normal, age-dependent 0.41 0.82

24



BPP insurance coefficients

Process/Coefficients ψp
BPP ψtr

BPP ψp ψtr

Data: BPP (2008)
Canonical 0.36 0.95 – –
(S.E) (0.09) (0.04)

Model
Canonical 0.14 0.88
Nonlinear process 0.43 0.81

Normal, age-dependent 0.41 0.82
Non-normal, age-dependent 0.41 0.82

24



BPP insurance coefficients

Process/Coefficients ψp
BPP ψtr

BPP ψp ψtr

Data: BPP (2008)
Canonical 0.36 0.95 – –
(S.E) (0.09) (0.04)

Model
Canonical 0.14 0.88
Nonlinear process 0.43 0.81
Normal, age-dependent 0.41 0.82
Non-normal, age-dependent 0.41 0.82

24



BPP insurance coefficients

Process/Coefficients ψp
BPP ψtr

BPP ψp ψtr

Data: BPP (2008)
Canonical 0.36 0.95 – –
(S.E) (0.09) (0.04)

Model
Canonical 0.14 0.88 0.30 0.91
Nonlinear process 0.43 0.81 0.46 0.89
Normal, age-dependent 0.41 0.82 0.46 0.88
Non-normal, age-dependent 0.41 0.82 0.45 0.84
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Welfare costs of earnings risk

Welfare cost
Canonical process 28.2%
Nonlinear process 26.1%

Normal, age-dependent 24.3%
Non-normal, age-dependent 25.4%
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Taking stock

I Disposable, HH earnings have much richer dynamics that
traditionally assumed

I Through the lens of a life-cycle model, these richer dynamics
• can account for, previously, hard to explain empirical findings
• imply lower welfare gains from social insurance

I Age-dependent and non-linear persistence are crucial
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Open questions

I What drives rich HH, post-tax earnings dynamics

• Wage vs hours risk
• Insurance role of: family vs government

I Employment risk vs endogenous choice: particularly for
secondary workers

I Rest of this talk
• Non-parametric, bird’s eye view
• Wages vs earnings (changes, not risk)
• Family vs government
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Earnings, wages, family and government
(De Nardi, Fella, Knoef, Paz Pardo and Van Ooijen, 2019)

I Dutch Income Panel Study (IPO): administrative data
1989-2014

I Representative sample: 95,000 individuals (25-60) and their
household members

• Attrition only through emigration or death

I Includes data on: (1) labour and asset income, (2) taxes
(individual taxation) and transfers

I Linked to Social Security data on yearly hours
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Non-linearities are a robust feature
Of earnings and wages
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Non-normality mostly driven by tails
Mainly due to wages
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Takeways

I Non-linearities are important
• in both (male) wages and earnings changes
• wage and earnings changes are more variable but less persistent

at the bottom and top of the distribution of previous earnings

I Non-normality is mainly driven by the tails of the distribution
of wage and earnings changes

• In the tails, negative skewness and high kurtosis in earnings are
mainly, but not only, driven by wages

• Similar to Norway (Halvorsen, Holter, Ozkan and Storesletten,
2019) but unlike Italy (Hoffmann and Malacrino, 2016),

I Government main channel of insurance
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What have we learned and what next

I What have we learnt
• Neglecting age-dependence, non-linearities and non-normalities

in earnings may substantially bias our findings about shock
insurability and the need for social insurance

• Age-dependence and non-linearities are particularly important
quantitatively (De Nardi, Fella and Paz Pardo, in progress)

I Future research:
• Endogenizing employment choice
• Cyclicality of non-linearities vs non-normality
• Implications for portfolio choices
• ...
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Canonical benchmark

σ2ε σ2η1 σ2ν ρ

Benchmark 0.0675 0.2363 0.0059 1

back
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