(Some) Economic Implications of Recent Findings on Earnings and Wage Dynamics

Giulio Fella

Queen Mary University of London, CFM and IFS

CINTIA Workshop on – Expectations and Risks affecting Households and Firms – 24–25 May 2019

Motivation

- Nature of income risk critical for many questions in economics. E.g.:
 - Saving and portfolio allocation
 - Consumption and wealth distribution
 - Ability to self-insure/welfare
 - \implies Scope for social insurance and redistribution

Motivation

- Nature of income risk critical for many questions in economics. E.g.:
 - Saving and portfolio allocation
 - Consumption and wealth distribution
 - Ability to self-insure/welfare
 - \implies Scope for social insurance and redistribution
- Better datasets and new methods are challenging long held views about labour income risk

Detrended labor earnings follow a (log-) linear process. E.g.

$$y_{it} = \delta_i + \eta_{it} + \varepsilon_{it}$$
$$\eta_{it} = \rho \eta_{i,t-1} + v_{it}$$

Detrended labor earnings follow a (log-) linear process. E.g.

$$y_{it} = \delta_i + \eta_{it} + \varepsilon_{it}$$
$$\eta_{it} = \rho \eta_{i,t-1} + v_{it}$$

- Three main features:
 - Age-independence of conditional 2nd and higher moments

Detrended labor earnings follow a (log-) linear process. E.g.

$$y_{it} = \delta_i + \eta_{it} + \varepsilon_{it}$$
$$\eta_{it} = \rho \eta_{i,t-1} + v_{it}$$

- Three main features:
 - Age-independence of conditional 2nd and higher moments
 - Normality: Shocks are symmetrically distributed + no fat tails

Detrended labor earnings follow a (log-) linear process. E.g.

$$y_{it} = \delta_i + \eta_{it} + \varepsilon_{it}$$
$$\eta_{it} = \rho \eta_{i,t-1} + v_{it}$$

- Three main features:
 - Age-independence of conditional 2nd and higher moments
 - Normality: Shocks are symmetrically distributed + no fat tails
 - Linearity: conditional 2nd and higher moments independent of $\eta_{i,t-1}$

Earnings do not fit the canonical model Age-dependence

Data: PSID 1968-92, post-tax, HH residual earnings, age 25-60

Earnings do not fit the canonical model Age-dependence

Data: PSID 1968-92, post-tax, HH residual earnings, age 25-60

Earnings do not fit the canonical model Age-dependence

Data: PSID 1968-92, post-tax, HH residual earnings, age 25-60

Earnings do not fit the canonical model

Non-linearity and non-normality

Earnings do not fit the canonical model

Non-linearity and non-normality

New and active literature

 Non-parametric (+parameter calibration), individual administrative data, emphasis on non-normality: Guvenen, Ozkan and Song (2014), Guvenen, Karahan, Ozkan and Song (2019)

New and active literature

- Non-parametric (+parameter calibration), individual administrative data, emphasis on non-normality: Guvenen, Ozkan and Song (2014), Guvenen, Karahan, Ozkan and Song (2019)
- Semi-parametric, survey household data, emphasis on non-linear persistence: Arellano, Blundell and Bonhomme (2017)

New and active literature

- Non-parametric (+parameter calibration), individual administrative data, emphasis on non-normality: Guvenen, Ozkan and Song (2014), Guvenen, Karahan, Ozkan and Song (2019)
- Semi-parametric, survey household data, emphasis on non-linear persistence: Arellano, Blundell and Bonhomme (2017)
- New findings making way in quantitative macro literature: Golosov, Troshkin and Tsyvinski (2016), McKay (2017), Kaplan, Moll and Violante (2018), De Nardi, Fella and Paz Pardo (various), ...

1. Estimate state-of the art, flexible, persistent+transitory process for household, post-tax labor earnings

- 1. Estimate state-of the art, flexible, persistent+transitory process for household, post-tax labor earnings
- 2. Use a structural life-cycle model to compare the implications of the flexible vs canonical earnings process for:

- 1. Estimate state-of the art, flexible, persistent+transitory process for household, post-tax labor earnings
- 2. Use a structural life-cycle model to compare the implications of the flexible vs canonical earnings process for:
 - Consumption (and wealth) inequality
 - Self-insurance
 - Welfare

- 1. Estimate state-of the art, flexible, persistent+transitory process for household, post-tax labor earnings
- 2. Use a structural life-cycle model to compare the implications of the flexible vs canonical earnings process for:
 - Consumption (and wealth) inequality
 - Self-insurance
 - Welfare
- 3. Wage vs earnings changes, family and government insurance

- 1. Estimate state-of the art, flexible, persistent+transitory process for household, post-tax labor earnings
- 2. Use a structural life-cycle model to compare the implications of the flexible vs canonical earnings process for:
 - Consumption (and wealth) inequality
 - Self-insurance
 - Welfare
- 3. Wage vs earnings changes, family and government insurance

1 and 2 joint with Mariacristina De Nardi and Gonzalo Paz Pardo, 3 ditto + Marike Knoepf and Raun Van Ooijen

Identifying labor income risk: issues

- Relevant income concept: HH, post-tax labor earnings
- Earnings risk

$$y_{it} = \frac{\eta_{it}}{\eta_{it}} + \varepsilon_{it}$$

- Stemming from the unobservable persistent component η_{it}
- Non-linearities in η_{it} process cannot be identified from autocovariances of y_t
- Earnings risk = wage risk + labor supply (choices vs risk)

A flexible NL but parsimonious model

Arellano, Blundell and Bonhomme (2017)

$$egin{aligned} \eta_{it}(q) &= Q_\eta(q | \eta_{i,t-1}, age_{it}) \ arepsilon_{it}(q) &= Q_arepsilon(q | age_{it}) \end{aligned}$$

A flexible NL but parsimonious model Arellano, Blundell and Bonhomme (2017)

$$\begin{aligned} & \text{Canonical model} \\ \eta_{it}(q) &= Q_{\eta}(q|\eta_{i,t-1}, age_{it}) &= \rho \eta_{i,t-1} + \sigma_{v} \phi^{-1}(q) \\ \varepsilon_{it}(q) &= Q_{\varepsilon}(q|age_{it}) &= \sigma_{\varepsilon} \phi^{-1}(u_{it}) \end{aligned}$$

~

1.1

A flexible NL but parsimonious model Arellano, Blundell and Bonhomme (2017)

$$\begin{array}{ll} \text{ABB} \\ \eta_{it}(q) = Q_{\eta}(q|\eta_{i,t-1}, age_{it}) &= \sum_{k=0}^{K} \alpha_{k}^{\eta}(q)\psi^{k}(\eta_{i,t-1}, age_{it}) \\ \varepsilon_{it}(q) = Q_{\varepsilon}(q|age_{it}) &= \sum_{k=0}^{K} \alpha_{k}^{\varepsilon}(q)\psi^{k}(age_{it}) \end{array}$$

A flexible NL but parsimonious model Arellano, Blundell and Bonhomme (2017)

Estimated NL vs canonical earnings process

Age-dependent second moments

Estimates

60

Estimated NL vs canonical earnings process

Age-dependent second moments

Estimates

60

60

Estimated NL vs canonical earnings process Non-normality

Estimated NL vs canonical earnings process

Nonlinearity

Study consumption, wealth and welfare (De Nardi, Fella and Paz Pardo, JEEA forth.)

- So, these earnings dynamics are much richer. Does it matter for:
 - Evolution of consumption inequality over the life cycle

Study consumption, wealth and welfare (De Nardi, Fella and Paz Pardo, JEEA forth.)

- So, these earnings dynamics are much richer. Does it matter for:
 - Evolution of consumption inequality over the life cycle
 - · Households ability to self-insure and welfare
- Use these earnings processes in a quantitative life-cycle model

Study consumption, wealth and welfare (De Nardi, Fella and Paz Pardo, JEEA forth.)

- So, these earnings dynamics are much richer. Does it matter for:
 - Evolution of consumption inequality over the life cycle
 - Households ability to self-insure and welfare
- ▶ Use these earnings processes in a quantitative life-cycle model
- Decompose the contribution of the different features of the NL earnings process

Model implications

OLG model, key features

- Ex-ante identical agents, work 25-60, retirement 61-86
- CRRA preferences
- Inelastic labor supply
- Single risk-free asset, no borrowing
- Infinitely-lived government, old age Social Security

OLG model, key features

- Ex-ante identical agents, work 25-60, retirement 61-86
- CRRA preferences
- Inelastic labor supply
- Single risk-free asset, no borrowing
- Infinitely-lived government, old age Social Security
- Earnings follow, alternatively, the two empirical processes described
 - β recalibrated to match 3.1 wealth/income ratio

Consumption implications

Variance of log consumption, data and models

- Benchmark generates too large increase by age.
- NL process generates substantially lower growth and captures (until age 47) non-monotonicity

Variance of log consumption, data and models

- Benchmark generates too large increase by age.
- NL process generates substantially lower growth and captures (until age 47) non-monotonicity
- Very hard to match without HIP (Guvenen 2007; Huggett, Ventura and Yaron 2011)

Opening the black box

Age-dependent second moments

Opening the black box

Age-dependent second moments

Opening the black box

Age-dependent moments + non-normality

Age-dependent moments + non-normality Mechanism

Opening the black box Full NL

Opening the black box Full NL

Self-insurance and welfare

 Blundell, Pistaferri and Preston (2008): Fraction of earning shock x = η, ε not reflected in consumption response

$$\phi^{x} = 1 - \frac{\mathsf{cov}(\Delta c_{it}, x_{it})}{\mathsf{var}(x_{it})}$$

 Blundell, Pistaferri and Preston (2008): Fraction of earning shock x = η, ε not reflected in consumption response

$$\phi^{x} = 1 - \frac{\mathsf{cov}(\Delta c_{it}, x_{it})}{\mathsf{var}(x_{it})}$$

Model true coefficients: earnings shocks are observed

 Blundell, Pistaferri and Preston (2008): Fraction of earning shock x = η, ε not reflected in consumption response

$$\phi^{x} = 1 - \frac{\operatorname{cov}(\Delta c_{it}, x_{it})}{\operatorname{var}(x_{it})}$$

- Model true coefficients: earnings shocks are observed
- In the data, BPP identification (assuming "canonical" process):

$$\phi^{\eta} = 1 - \frac{\operatorname{cov}(\Delta c_{it}, y_{i,t+1} - y_{i,t-2})}{\operatorname{cov}(\Delta y_{it}, y_{i,t+1} - y_{i,t-2})}, \ \phi^{\epsilon} = 1 - \frac{\operatorname{cov}(\Delta c_{it}, \Delta y_{i,t+1})}{\operatorname{cov}(\Delta y_{i,t}, \Delta y_{i,t+1})}$$

Process/Coefficients	ψ^{p}_{BPP}	ψ^{tr}_{BPP}	$\psi^{{m p}}$	ψ^{tr}
	Dat	a: BPP	(2008))
Canonical	0.36	0.95	—	_
(S.E)	(0.09)	(0.04)		
	Model			
Canonical	0.14	0.88		

Process/Coefficients	ψ^{p}_{BPP}	ψ^{tr}_{BPP}	ψ^{p}	ψ^{tr}
	Dat	a: BPP	(2008)
Canonical	0.36	0.95	_	-
(S.E)	(0.09)	(0.04)		
	Model			
Canonical	0.14	0.88		
Nonlinear process	0.43	0.81		

Process/Coefficients	ψ^{p}_{BPP}	ψ^{tr}_{BPP}	ψ^{p}	ψ^{tr}
	Dat	a: BPP	(2008)
Canonical	0.36	0.95	-	—
(S.E)	(0.09)	(0.04)		
	Model			
Canonical	0.14	0.88		
Nonlinear process	0.43	0.81		
Normal, age-dependent	0.41	0.82		
Non-normal, age-dependent	0.41	0.82		

Process/Coefficients	ψ^{p}_{BPP}	ψ^{tr}_{BPP}	ψ^{p}	ψ^{tr}
	Data: BPP (2008)			
Canonical	0.36	0.95	-	—
(S.E)	(0.09)	(0.04)		
	Mc	odel		
Canonical	0.14	0.88	0.30	0.91
Nonlinear process	0.43	0.81	0.46	0.89
Normal, age-dependent	0.41	0.82	0.46	0.88
Non-normal, age-dependent	0.41	0.82	0.45	0.84

Welfare costs of earnings risk

	Welfare cost		
Canonical process	28.2%		
Nonlinear process	26.1%		

Welfare costs of earnings risk

	Welfare cost
Canonical process	28.2%
Nonlinear process	26.1%
Normal, age-dependent	24.3%
Non-normal, age-dependent	25.4%

Taking stock

 Disposable, HH earnings have much richer dynamics that traditionally assumed

Taking stock

- Disposable, HH earnings have much richer dynamics that traditionally assumed
- Through the lens of a life-cycle model, these richer dynamics
 - can account for, previously, hard to explain empirical findings
 - imply lower welfare gains from social insurance

Taking stock

- Disposable, HH earnings have much richer dynamics that traditionally assumed
- Through the lens of a life-cycle model, these richer dynamics
 - can account for, previously, hard to explain empirical findings
 - imply lower welfare gains from social insurance
- Age-dependent and non-linear persistence are crucial

What drives rich HH, post-tax earnings dynamics

- What drives rich HH, post-tax earnings dynamics
 - Wage vs hours risk

What drives rich HH, post-tax earnings dynamics

- Wage vs hours risk
- Insurance role of: family vs government

- What drives rich HH, post-tax earnings dynamics
 - Wage vs hours risk
 - Insurance role of: family vs government
- Employment risk vs endogenous choice: particularly for secondary workers

- What drives rich HH, post-tax earnings dynamics
 - Wage vs hours risk
 - Insurance role of: family vs government
- Employment risk vs endogenous choice: particularly for secondary workers
- Rest of this talk
 - Non-parametric, bird's eye view
 - Wages vs earnings (changes, **not** risk)
 - Family vs government

Earnings, wages, family and government (De Nardi, Fella, Knoef, Paz Pardo and Van Ooijen, 2019)

- Dutch Income Panel Study (IPO): administrative data 1989-2014
- Representative sample: 95,000 individuals (25-60) and their household members
 - Attrition only through emigration or death

Earnings, wages, family and government (De Nardi, Fella, Knoef, Paz Pardo and Van Ooijen, 2019)

- Dutch Income Panel Study (IPO): administrative data 1989-2014
- Representative sample: 95,000 individuals (25-60) and their household members
 - Attrition only through emigration or death
- Includes data on: (1) labour and asset income, (2) taxes (individual taxation) and transfers

Earnings, wages, family and government (De Nardi, Fella, Knoef, Paz Pardo and Van Ooijen, 2019)

- Dutch Income Panel Study (IPO): administrative data 1989-2014
- Representative sample: 95,000 individuals (25-60) and their household members
 - Attrition only through emigration or death
- Includes data on: (1) labour and asset income, (2) taxes (individual taxation) and transfers
- Linked to Social Security data on yearly hours

Non-linearities are a robust feature

Of earnings and wages

$$\rho_{|y_{t-1}}^t$$

Non-linearities are a robust feature

Of earnings and wages

Non-normality mostly driven by tails

Mainly due to wages

Takeways

- Non-linearities are important
 - in both (male) wages and earnings changes
 - wage and earnings changes are more variable but less persistent at the bottom and top of the distribution of previous earnings
- Non-normality is mainly driven by the tails of the distribution of wage and earnings changes
 - In the tails, negative skewness and high kurtosis in earnings are mainly, but not only, driven by wages
 - Similar to Norway (Halvorsen, Holter, Ozkan and Storesletten, 2019) but unlike Italy (Hoffmann and Malacrino, 2016),
- Government main channel of insurance

What have we learned and what next

What have we learnt

- Neglecting age-dependence, non-linearities and non-normalities in earnings may substantially bias our findings about shock insurability and the need for social insurance
- Age-dependence and non-linearities are particularly important quantitatively (De Nardi, Fella and Paz Pardo, in progress)
- Future research:
 - Endogenizing employment choice
 - Cyclicality of non-linearities vs non-normality
 - Implications for portfolio choices
 - ...

Canonical benchmark

$\begin{tabular}{cccc} & \sigma_{\epsilon}^2 & \sigma_{\eta_1}^2 & \sigma_{\nu}^2 & \rho \\ \hline & & & \\$

▶ back