## International finance <br> Problem set 2

The change in the stock of net foreign assets in period 1 and 2 are respectively

$$
\begin{gather*}
B_{1}-B_{0}=r B_{0}+Y_{1}-C_{1}  \tag{1}\\
B_{2}-B_{1}=r B_{1}+Y_{2}-C_{2} . \tag{2}
\end{gather*}
$$

Given finite horizon, solvency requires $B_{2} \geq 0$ (the individual/country cannot die in debt). Furthermore, since the marginal utility of consumption is always positive $B_{2}=0$ (it is not optimal to die with a positive stock of assets).

Imposing $B_{2}=0$ in (2) and using it to replace for $B_{1}$ in (1) one obtains the intertemporal budget constraint (IBC)

$$
\begin{equation*}
C_{1}+\frac{C_{2}}{1+r}=Y_{1}+\frac{Y_{2}}{1+r}+(1+r) B_{0} \tag{3}
\end{equation*}
$$

If $B_{0}=0 \mathrm{PDV}$ of lifetime consumption equals PDV of lifetime income. $B_{0}>0$ (positive wealth at birth allows higher PDV of consumption).

You are going to use (3) both for question 1 and 3. Please go through questions 1 then 3 and finally 2 so that you can recycle your equations and save time.

1. The (absolute value of the) marginal rate of substitution (how many unit of $C_{2}$ the consumer is willing to give up for a unit of $C_{1}$ along an indifference curve) is given by

$$
\begin{equation*}
M R S=\frac{M U_{C_{2}}}{M U_{C_{1}}}=\frac{\beta \frac{1}{C_{2}}}{\frac{1}{C_{1}}}=\frac{\beta C_{1}}{C_{2}} \tag{4}
\end{equation*}
$$

(a) Since the country cannot trade, the good is non-storable and utility is strictly increasing, optimality requires endowments to be fully consumed in each period; i.e. $C_{1}=Y_{1}$ and $C_{2}=Y_{2}$. The autarky interest rate is such that $\frac{1}{1+r^{A}}$, the price ratio of $C_{2}$ in terms of $C_{1}$ equals the autarky $M R S^{A}$ or (replacing for $C_{1}, C_{2}$ in (4) and equating to the price ratio)

$$
\begin{equation*}
\frac{\beta Y_{1}}{Y_{2}}=\frac{1}{1+r^{A}} \tag{5}
\end{equation*}
$$

which implies

$$
\begin{equation*}
r^{A}=\frac{40(1+g)}{\beta 40}-1=\frac{1+g}{\beta}-1 \sim .139 . \tag{6}
\end{equation*}
$$

(b) Now the country can borrow and lend at the world rate $r$ and is not forced to consume its endowment in every period. The market relative price of consumption today relative to tomorrow is now $\frac{1}{1+r}$ and at optimum it must equal the MRS in (4) or

$$
\begin{equation*}
\frac{\beta C_{1}}{C_{2}}=\frac{1}{1+r} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{C_{2}}{C_{1}}=\beta(1+r) . \tag{8}
\end{equation*}
$$

The FOC determines the slope of the consumption profile. $C_{2} \lesseqgtr C_{1}$ if $\beta(1+$ $r) \lesseqgtr 1$. Since $\beta(1+r)=1(8)$ becomes

$$
\begin{equation*}
C_{2}=C_{1} . \tag{9}
\end{equation*}
$$

One eq. in the two unknowns $C_{2}, C_{1}$. To obtain a unique solution we need a second equation: IBC (3).
Replacing for $C_{2}$ and rearranging we obtain

$$
\begin{equation*}
C_{1}=\frac{1+r}{2+r}\left(Y_{1}+\frac{Y_{2}}{1+r}+(1+r) B_{0}\right) . \tag{10}
\end{equation*}
$$

$C_{1}$ is roughly half (for $r$ small) lifetime resources.
Replacing in (1)

$$
\begin{equation*}
C A_{1}=S_{1}=B_{1}-B_{0}=Y_{1}+r B_{0}-\frac{1+r}{2+r}\left(Y_{1}+\frac{Y_{2}}{1+r}+(1+r) B_{0}\right) . \tag{11}
\end{equation*}
$$

Leave this equation on the board since you are going to use it for question 3.
In question 1 it is $B_{0}=0$ and (11) can be rewritten as

$$
\begin{equation*}
S_{1}=B_{1}-B_{0}=\frac{1}{2+r}\left(Y_{1}-Y_{2}\right)=\frac{1}{2+r}[40-40(1+g)]=-\frac{40 g}{2+r} . \tag{12}
\end{equation*}
$$

Since optimality requires a flat consumption profile (eq. (9)), saving is positive if $Y_{1}>Y_{2}$ and negative viceversa. Since $g>0$, the country is borrowing in the first period.
(c) It is

$$
\begin{equation*}
C A_{1}=B_{1}-B_{0}=S_{1}=-\frac{40 g}{2+r} \tag{13}
\end{equation*}
$$

where the last equality follows from (12).
Finally, $B_{0}=0$ and $B_{2}=0$ imply $C A_{1}=B_{1}$ and $C A_{2}=-B_{1}$. Hence, it is $C A_{2}=-C A_{1}$. Solvency, requires the country to run a second period current account surplus equal (in absolute value) to the first period current account deficit.
(d) $Y_{2}$ increases relative to $Y_{1}$ and from (13), $C A_{1}$ falls to keep consumption smooth across time.
2. Assume for simplicity $B_{0}=0$ (the same result goes through with $B_{0} \neq 0$ ). Balanced current account means $C A_{1}=0$ or $S_{1}=B_{1}=Y_{1}-C_{1}=0$ and $C A_{2}=Y_{2}-C_{2}$.
Since the Israel economy is open to the rest of the world, for $C A_{1}=0$ the intertemporal optimality condition for consumption

$$
\begin{equation*}
\frac{C_{2}}{C_{1}}=\beta(1+r) \tag{14}
\end{equation*}
$$

must be satisfied at $C_{1}=Y_{2}$ and $C_{2}=Y_{2}$; i.e. the autarky interest rate (MRS at the endowment point) equals the world one.
Denote by $Y_{1}^{\prime}<Y_{1}$ the new, lower, level of first-period income. Since $Y_{2}$ is unchanged, (14) is no longer satisfied at the original endowment point. $C_{1}$ has fallen relative to $C_{2}$ at the original endowment point; i.e. the LHS of (14) increases. Since $C_{1}$ falls at the original endowment point, its marginal utility goes up. But optimality calls for the ratio of marginal utilities (and of consumption) in (14) to stay constant. This requires $C_{1}$ to exceed $Y_{1}^{\prime}$, the country runs a current account deficit in the first period to keep the ratio $C_{2} / C_{1}$ constant.
Alternatively, the autarky interest rate satisfies

$$
\begin{equation*}
M R S^{A}=\frac{\beta Y_{1}}{Y_{2}}=\frac{1}{1+r^{A}}=\frac{1}{1+r} . \tag{15}
\end{equation*}
$$

$Y_{1}^{\prime}<Y_{1}$ implies

$$
\begin{equation*}
\frac{1}{1+r}=\frac{\beta Y_{1}}{Y_{2}}>\frac{\beta Y_{1}^{\prime}}{Y_{2}}=\frac{1}{1+r^{A^{\prime}}} \tag{16}
\end{equation*}
$$

or $r^{A \prime}>r$. After the shock, the country borrows at the world interest rate, since the latter is lower than the autarky one.
3. Notice that there was a typo. A debt reduction implies an increase in $B_{0}$ (a fall in absolute value).
(a) IBC is (10) above. The optimality condition for consumption is (8) which, given $\beta(1+r)=1$, reduces to (9).
(b) The country's total income in the first period is $Y_{1}+r B_{0} . B_{0}$ increases as a consequence of the debt reduction and so does total first period income.
$C_{1}$ is given by (10) and also increases as the country PDV of lifetime resources increases.
$C A_{1}$ is given by (11) with $Y_{2}=0$. Rearranging it can be written as

$$
\begin{equation*}
C A_{1}=\frac{1}{2+r}\left[Y_{1}+B_{0}\left(r(2+r)-(1+r)^{2}\right)\right]=\frac{1}{2+r}\left[Y_{1}-B_{0}\right] . \tag{17}
\end{equation*}
$$

$C A_{1}$ falls in response to debt reduction (increase in $B_{0}$ ) as the country borrows to carry some of the increase in lifetime resources over to future consumption.

