Macroeconomics A

Solution to problem set 7

I have made a mistake in setting up this problem. Given the chosen production function, assuming that the only income is income from renting capital to firms leaves a residual e_{t} which is unassigned. This is bad! Assume that e_{t} is distributed as dividend income to consumers. Let us denote by D_{t} dividend income.

1. The dynamic budget constraint is now

$$
\begin{equation*}
B_{t+1}=\left(1+r_{t}\right) B_{t}+D_{t}-C_{t} \tag{1}
\end{equation*}
$$

as there is no labour income.
(a) Replacing for $C_{t}+i$ in the consumer problem using the dynamic constraint gives

$$
\begin{equation*}
\max _{\left\{B_{t+i+1}\right\}_{i=0}^{\infty}} \sum_{i=0}^{\infty} E\left(\left.\frac{u\left(B_{t+i+1}+D_{t}-\left(1+r_{t}\right) B_{t}\right)}{(1+\rho)^{i}} \right\rvert\, I_{t}\right) . \tag{2}
\end{equation*}
$$

The first order condition with respect to B_{t+1} is

$$
\begin{equation*}
u^{\prime}\left(C_{t}\right)=E\left(\left.\frac{1+r_{t+1}}{1+\rho} u^{\prime}\left(C_{t+1}\right) \right\rvert\, I_{t}\right) . \tag{3}
\end{equation*}
$$

Given the utility function it is $u^{\prime}(C)=1-2 \theta C$ and the Euler equation (3) can be rewritten as

$$
\begin{equation*}
1-2 \theta C_{t}=E\left(\left.\frac{1+r_{t+1}}{1+\rho}\left(1-2 \theta C_{t+1}\right) \right\rvert\, I_{t}\right) . \tag{4}
\end{equation*}
$$

(b) Equilibrium requires $r_{t+1}=F^{\prime}\left(K_{t+1}\right)=A$, where A is deterministic. Hence, in equilibrium the Euler equation is

$$
\begin{equation*}
1-2 \theta C_{t}=E\left(\left.\frac{1+A}{1+\rho}\left(1-2 \theta C_{t+1}\right) \right\rvert\, I_{t}\right) \tag{5}
\end{equation*}
$$

and, given $\rho=A$,

$$
\begin{equation*}
1-2 \theta C_{t}=E\left(\left(1-2 \theta C_{t+1}\right) \mid I_{t}\right) \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
C_{t}=E\left(C_{t+1} \mid I_{t}\right) \tag{7}
\end{equation*}
$$

Finally, in equilibrium, the dynamic budget constraint becomes

$$
\begin{equation*}
K_{t+1}=(1+A) K_{t}+e_{t}-C_{t} . \tag{8}
\end{equation*}
$$

Now things add up!
(c) With quadratic preferences and linear production function with additive shocks, there is no consumption tilting effect on the Euler equation as shocks do not affect the ratio between $1+r_{t+1}$ and $1+\rho$. So all the dynamics will be driven by consumption smoothing.
(d) Without uncertainty, it is $C_{t}=C_{t+1}$. Consumption is flat. Consumption would respond one-to-one to an unexpected permanent shock. On the other hand, it will respond less than one-to-one to the permanent shock to spread the one-off shock across the whole lifetime. The intertemporal budget constraint requires the present value of the increase in consumption to equal the size of the one-off shock e_{t}.
(e) Use the guess to replace for C_{t} in the equilibrium dynamic constraint (8). This gives

$$
\begin{equation*}
K_{t+1}=(1+A) K_{t}+e_{t}-\left(\alpha+\beta K_{t}+\gamma e_{t}\right) . \tag{9}
\end{equation*}
$$

with α, β, γ to be determined.
(f) The guess must also satisfy the Euler equation which requires

$$
\begin{equation*}
\alpha+\beta K_{t}+\gamma e_{t}=E\left(\alpha+\beta K_{t+1}+\gamma e_{t} \mid I_{t}\right) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta K_{t}+\gamma e_{t}=\beta E\left(K_{t+1} \mid I_{t}\right)+\gamma E\left(e_{t} \mid I_{t}\right) . \tag{11}
\end{equation*}
$$

Using the policy function for K_{t+1} in (9) this becomes

$$
\begin{equation*}
\left.\beta K_{t}+\gamma e_{t}=\beta E\left(\alpha+(1+A-\beta) K_{t}+(1-\gamma) e_{t}\right) \mid I_{t}\right)+\gamma E\left(e_{t} \mid I_{t}\right) \tag{12}
\end{equation*}
$$

This is now a deterministic equation which can be solved for the unknown parameters α, β, γ. The value of $E\left(e_{t+1} \mid I_{t}\right)$ depends on how e_{t} is distributed.
If e_{t} is white noise, it is $E\left[e_{t+1} \mid I_{t}\right]=0$ and (13) becomes

$$
\begin{equation*}
\left.\beta K_{t}+\gamma e_{t}=\beta\left(\alpha+(1+A-\beta) K_{t}+(1-\gamma) e_{t}\right)\right) \tag{13}
\end{equation*}
$$

For it to be satisfied for any K_{t} and e_{t} we must equate coefficients on the same variables on both sides of the equation. This requires $\alpha=0, \beta=A$ and $\gamma=$ $A(1-\gamma)$ or $\gamma=A /(1+A)$. Replacing in equation (9) gives

$$
\begin{equation*}
K_{t+1}=K_{t}+\frac{1}{1+A} e_{t} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{t}=K_{t}+Y_{t}-K_{t+1}=(1+A) K_{t}+\left(1-\frac{A}{1+A}\right) e_{t}=(1+A) K_{t}+\frac{A}{1+A} e_{t} . \tag{15}
\end{equation*}
$$

The shock is temporary, there is no consumption tilting. Consumption smoothing dictates that most of the shock is save (i.e. goes into $K_{t+1}-K_{t}$) and only a fraction is consumed.
(g) In this case it is $E\left(e_{t+1} \mid I_{t}\right)=e_{t}$. Replacing in equation (13) we obtain

$$
\begin{equation*}
\left.\beta K_{t}+\gamma e_{t}=\beta\left(\alpha+(1+A-\beta) K_{t}+(1-\gamma) e_{t}\right)\right)+e_{t} . \tag{16}
\end{equation*}
$$

For it to be satisfied for any K_{t} and e_{t} we must equate coefficients on the same variables on both sides of the equation. This requires $\alpha=0, \beta=1+A$ and $\gamma=1$. Replacing in equation (9) gives

$$
\begin{equation*}
K_{t+1}=K_{t} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{t}=K_{t}+Y_{t}-K_{t}+1=Y_{t}=A K_{t}+e_{t} . \tag{18}
\end{equation*}
$$

The shock is permanent, there is no consumption tilting. Consumption smoothing dictates that all the of the shock is consumed and none of it is saved.

