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How macroeconomists think

Macroeconomists (and economists in general) think by means of

theories or models → Abstract (mathematical) representations

of reality.

Method: Scientific and inductive.

1. Set of facts to explain. Accurately measure the variables

of interest for such facts.

2. Conjecture a theory involving the (endogenous) variables
whose behaviour has to be explained.

Two components:

• Assumptions: variables taken as given (exogenous), does not

try to explain.

• Logical deductions from the assumptions → implications for

endogenous variables.

3. Validate or falsify the theory.
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How macroeconomists think

Logical consistency of deductions is necessary but not sufficient

for a good theory. A good (useful) theory

is not rejected by the data. It is better than an alternative one

if:

I fits the data better in a statistical sense;

I can explain a larger set of facts.
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How macroeconomists think (II)

I A model performs two roles:

• Measurement tool: e.g. How big a fraction of y can be

explained by x?

• Laboratory for experiments: e.g. What happens to y if x

changes by 1%?

I Components of a model.

• The model environment. Exogenous preferences,

technology, market structure, property rights.

• The model equilibrium . The vector of (values for)

endogenous variables which satisfies all the conditions of the

model.
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Example 1

General equilibrium for a static (just one period) endowment

economy. Two agents (A and B) and two goods (1 and 2).

Endowments (eA1 , e
A
2 ) and (eB1 , e

B
2 ).

Planning equilibrium. Vector (list of numbers) of allocations

(quantities) of goods supplied and demanded that satisfies the

technological constraint (i.e. for each good total consumption

does not exceed total endowment). In symbols, a vector

{eA1 , eA2 , eB1 , eB2 , cA1 , cA2 , cB1 , cB2 } such that

1. cA1 + cB1 ≤ eA1 + eB1 and cA2 + cB2 ≤ eA2 + eB2 .
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Example 1 (II)

Market equilibrium. Vector of allocations and prices such

that consumers maximize their utility and all markets clear

(demand equal supply). In symbols, a vector

{eA1 , eA2 , eB1 , eB2 , cA1 , cA2 , cB1 , cB2 , p1, p2} such that

1. consumers maximize utility given prices;

2. cA1 + cB1 = eA1 + eB1 and cA2 + cB2 = eA2 + eB2 .
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Example 2

General equilibrium for the dynamic (many periods indexed by

t) counterpart of the same endowment economy. Endowments

(eA1 (t), eA2 (t)) and (eB1 (t), eB2 (t)).

The model equilibrium is no longer a vector (list of numbers)

for the endogenous variables. It is a vector of functions of time;

i.e. one list of numbers for the endogenous variables for each

time period (indexed by time).
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Example 2 (II)

Planning equilibrium: a vector

{eA1 (t), eA2 (t), eB1 (t), eB2 (t), cA1 (t), cA2 (t), cB1 (t), cB2 (t)} such that

1. cA1 (t) + cB1 (t) ≤ eA1 (t) + eB1 (t) and cA2 (t) + cB2 (t) ≤
eA2 (t) + eB2 (t).

Market equilibrium: a vector

{eA1 (t), eA2 (t), eB1 (t), eB2 (t), cA1 (t), cA2 (t), cB1 (t), cB2 (t), p1(t), p2(t)}
such that

1. consumers maximize utility given prices and

2. cA1 (t) + cB1 (t) = eA1 (t) + eB1 (t) and cA2 (t) + cB2 (t) =

eA2 (t) + eB2 (t).
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Why time

Modern macroeconomics is inherently dynamics because:

I Present affects the future through accumulation.

I If agents are forward looking, future affects the present

through expectations.

→ Nearly all the equilibria we will study in macroeconomics

will be vectors of functions of time.
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Dynamic opt. - finite horizon*

Consider the following, finite horizon, saving problem.

Optimal control or sequence problem (SP)

W = max
{cs,as+1}Ts=t

T∑
s=t

βs−tEtu (cs) (1)

s.t. as+1 = (1 + r) as + ys − cs, (2)

at given, aT+1 ≥ b (3)

with u continuous and strictly increasing.

* The following notes have benefitted from Chapter 3 of Per Krusell’s very readable lecture

notes that you can find here. I have gone slower and easier on the infinite horizon stuff. You

may want to take a look at the original notes for a deeper treatement.
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Deterministic, finite horizon

Deterministic case: ys is constant (e.g. ys = 0, for all s).

Solution: a pair of sequences {cs, as+1}Ts=t of real numbers; i.e.

two vectors in RT−t+1.

Existence of a solution: If the choice set is non-empty and

compact, a solution exists (Weierstrass theorem). This is the

case if b is finite (e.g. solvency b ≥ 0).
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Deterministic, finite horizon (II)

More formally, for given T, b the solution is a pair of sequences

{cs(at), as+1(at)}Ts=t such that the Euler equation

u′(cs) = β(1 + r)u′(cs+1) (4)

holds together with (2) and (3).

I System of 2 first-order difference equations.

I Need two boundary conditions for a unique solution.

I Otherwise infinite number of solutions to the system of

difference equations and no solution (no max) for the

optimization problem.
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Deterministic, finite horizon (III)

I For given T, b the sequences depend on at, t. Hence, the

value function W, the maximand evaluated along an

optimal path, is also a function Wt(at).
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Stochastic, finite horizon

Stochastic case: We restrict attention to stochastic process of

the form:

yt = g(vt−1, vt−2, ..., vt−k) + ut

with ut a random innovation.*

I The above restriction implies

E[yt+1|yt, vt, ..., vt−k, vt−k−1, ..., v0] =

E[yt+1|yt, vt, ..., vt−k+1].

I Therefore the variable zt = {yt, vt, ..., vt−k+1} is a

conservatively appropriate (i.e correct but possibly

redundant) state variable

* The above process encompasses both finite AR and finite MA processes. This can be seen by

setting vt−i = yt−i for an AR process and vt−i = ut−i for an MA process.
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Stochastic, finite horizon (II)

I The solution is a pair of sequences

{cs(at, zt), as+1(at, zt)}Ts=t for each possible history {zs}Ts=t

such that the Euler equation

u′(cs) = β(1 + r)Esu
′(cs+1) (5)

holds together with (2) and (3).

I The possible future histories depend on current zt and

therefore so do the optimal sequences and the value

function Wt(at, zt).
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Stochastic, finite horizon (III)

I As there is more than one possible history (compared to

the deterministic case), the solution has now a larger

dimension.

I Two issues:

1. does a solution exist;

2. is the SP the easiest method to find it.
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1. Does a solution exist?

Two possible cases:

a) vs, hence ys, can take only a finite number of values. We

are still dealing with vectors in Rh for some h and

Weierstrass theorem still implies existence of a solution.

b) vs, hence ys, can take a continuum of value. There is an

uncountably infinite number of possible histories. We are

no longer dealing with elements of Rh. What do continuity

and compactness mean in such a space? We need

alternative sufficient conditions for a max to exist.
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2. Is solving SP the easiest approach?

We need a preliminary result.

Law of iterated expectations: Given a random variable z

and two nested informations sets Ω ⊆ H it is

E(E[z|H]|Ω) = E[z|Ω].

e.g. suppose we have a stochastic process zt and be It the

information set available at time t. The law of iterated

expectations implies E(E[zt+h+s|It+h]|It) = E[zt+h+s|It].
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2. Is solving SP the easiest method? (II)

The law of iterated expectations allows to rewrite the SP

problem as

Ws(as, zs) = (6)

max
{cs,as+1}

[
u(ct) + βEt max

{cs,as+1}Ts=t+1

T∑
s=t+1

βs−(t+1)Es+1u (cs)

]
s.t. as+1 = (1 + r) as + ys − cs, (7)

at given, aT+1 ≥ b (8)
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2. Is solving SP the easiest method? (III)

By definition of the value function Wt(at, zt) the above system

can be rewritten in the

Dynamic programming or recursive problem (RP) form

Ws(as, zs) = max
{cs,as+1}

u(cs) + βEsWs+1(as+1, zs+1) (9)

s.t. as+1 = (1 + r) as + ys − cs, (10)

at given, aT+1 ≥ b (11)
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Solving RP

For given T, b, a solution for RP is a triplet of functions

{cs(as, zs), as+1(as, zs),Ws(as, zs)} of time, beginning of period

assets and current income realization such that

u′(cs) = βEs
∂Ws+1(as+1, zs+1)

∂as+1
, (12)

the Bellman equation (9), the dynamic constraint (10) plus the

terminal condition hold (note that we are assuming W

differentiable with respect to wealth).

If the function Ws+1(as+1, zs+1) is known, (12) and (10) allow

to solve for the functions cs(as, zs), as+1(as, zs).

WT (aT , zT ) = u(cT ) is known and one can solve by working

backwards.
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Are SP and RP equivalent?

Two sets of questions:

1. When are SP and RP equivalent?

2. If they are which one is easier to use?
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Are SP and RP equivalent?

The connection between the two problems, is Bellman’s

Principle of Optimality.

I If the value function for SP exists than a solution for SP

generates functions Ws(as, zs), cs(as, zs) which together

with (10) satisfy the Bellman equation (9); i.e. SP → RP.

We have seen that Weierstrass theorem ensures SP has a

solution if the solution is a vector in Rh.

I If RP has a solution which satisfies some regularity

condition then the path generated by the policy functions

solve SP; RP → SP.
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Are SP and RP equivalent? (II)

In the kind of problems we will consider the two problems are

equivalent and we can solve whichever we find easier. In the

presence of uncertainty it will be RP.
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When is it easier to solve RP

I Functions are more complicated objects that vectors in Rh,

but...

I In the deterministic case there is no real advantage if we

are interested in the solution for just one value of at, b. But

if we are interested in the solution for various at, b we need

to solve SP many times. The solution to RP holds for any

at, b (it is a function).

I In the stochastic case, we need to work out the solution to

SP for any possible history! The solution to RP applies for

any realization of zs.
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When is it easier to solve RP? (II)

So, in many case RP is actually easier to solve, particularly for

numerical problems which need to be solved with computers. In

fact, dynamic programming is the tool of choice of numerical

macro.
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When is it easier to solve RP
If the horizon is infinite, T =∞, both SP and RP look the

same for all t in which at, zt are the same. The value function

and optimal sequences {cs, as+1}∞s=t in SP are independent of t.

Therefore we have

W (at, zt) = max
{cs,as+1}∞s=t

∞∑
s=t

βs−tEtu (cs) (SP)

s.t. as+1 = (1 + r) as + ys − cs,
at given.

and

W (as, zs) = max
{cs,as+1}

u (cs) + βEsW (as+1, zs+1) (RP)

s.t. as+1 = (1 + r) as + ys − cs,
at given.
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Infinite horizon

I Infinite horizon models are sometimes easier to solve

(because of stationarity), sometimes more relevant (e.g. if

agents are altruistic the economy may behave as if agents

live forever).

I Yet, they involve additional complications. The solution to

SP are now infinite sequences rather than vectors in Rh.

We cannot invoke Weierstrass theorem to guarantee

existence of solution to SP!
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Infinite horizon II

But think about what the conditions in Weierstrass theorem

buy you.

1. Boundedness of the choice set and continuity of the

objective function for any feasible plan buy you

boundedness of the of the maximand → the sup of the

maximand is bounded;

2. closeness of the choice set imply that the sup is internal to

the set → the sup is a max.
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Infinite horizon III

Existence of solution to SP with T +∞ requires similar

conditions:

1. Given zs, as the set of values cs, as+1 satisfying the

dynamic constraint must be compact.

2. The maximand must be bounded for all feasible plans.
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Infinite horizon IV

Let us concentrate on 2.

I The maximand is an infinite sum. Bounded u is necessary

but not sufficient for it to be bounded. We need β < 1.

I Usually u is assumed strictly increasing (unbounded).

Some boundary conditions (as in the finite horizon case)

must ensure that the maximand is bounded.

I One such boundary condition (but there can be many

others) is the No-Ponzi-game condition you have already

encountered in the Ramsey model. It requires

lims→∞
as

(1+r)s ≥ 0.
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Infinite horizon V

To see how it works, consider a deterministic model with ys = 0

for all s. Consider a candidate bounded solution {c∗s, a∗s+1}∞s=t

with cs < c̄,∀s.
Consider the following alternative plan:

1. c̃t = c∗t + 1 which implies at+1 = a∗t+1 − 1.

2. For all s > t leave c̃s = c∗s by borrowing to pay interests on

the original extra loan of one; i.e. ãs+1 = a∗s+1− (1 + r)(s−t).

With u strictly increasing this is an improvement on any

candidate solution c∗s. Therefore lifetime utility cannot achieve a

max.

The No-Ponzi-game constraint rules out such a policy since it

implies lims→∞
as

(1+r)s = −(1 + r)−t < 0.

We will always need some kind of terminal condition to

guarantee a solution to SP.
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Method 1

Solving RP using the Bellman equation

Use the Bellman equation

W (as, zs) = max
{cs,as+1}

u (cs) + βEsW (as+1, zs+1)

the optimality condition

u′(cs) = βEs
∂W (as+1, zs+1)

∂as+1

and the dynamics budget identity to solve jointly for

W (a, z), c(a, z) and a′(a, z).

We will use it just at the end of the course and talk further

about it then.
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Method 2:

Solving RP using the Euler equation

Suppose we know the value function W (as, zs) and that it is

differentiable.

Using the dynamic constraint to replace for cs in (RP) we can

maximize with respect to as+1 and obtain

u′(cs) = βEs
∂W (as+1, zs+1)

∂as+1
(13)

and given that u and W are known function we can solve for c.
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Method 2:

Solving RP using the Euler equation II

But what if we do not know W? We can still do it!

Differentiate the value function W (as, zs) with respect to as to

obtain

∂W (as, zs)

∂as
= u′(cs)

∂cs
∂as

+ βEs
∂W (as+1, zs+1)

∂as+1

[
(1 + r)− ∂cs

∂as

]
(14)

= βEs
∂W (as+1, zs+1)

∂as+1
(1 + r) = (1 + r)[u′(cs)].

(15)
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Method 2:

Solving RP using the Euler equation III

The above envelope condition allows to rewrite (13) as

u′(cs) = β(1 + r)Esu
′(cs+1). (16)

The Euler equation does not contain the value function and one

can use it to solve for the optimal policy c(a, z) without needing

to solve for W.

How do we go about doing this? Guess and verify.
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Guess and verify the policy function

I Under appropriate regularity conditions the solution to the

problem is unique.

I If a guess turns out to solve the maximization problem,

then it is the unique solution.
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Guess and verify the policy function: steps

1. Choose zs. Trick: if ys is of the form

ys = g(vs−1, vs−2, ..., vs−k) + us,

where vs is a generic variable,∗ then zs = {ys, vs, ..., vs−k+1}
is a conservatively appropriate state variable.

2. Guess a functional form for c(as, zs) with unknown

coefficients. This is more an art than a science, but most of

our problems will have linear policy functions; i.e.

cs = α0 + α1as + α2ys + α3vs + · · ·+ αk+1vs−k+1.

* Note that vs here denotes a generic variable.

c© Giulio Fella, 2014 ECOM 009 Macroeconomics B - Lecture 1 38/197



Guess and verify the policy function: steps

3. Use the guess for c(as, zs) to replace in the Euler equation

and the dynamic budget constraint. Use one equation to

replace appropriately into the other one. Impose that

coefficients on each variable must add up to zero (otherwise

the solution would not hold for any possible value of such

variables).
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