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Abstract. Soft robotics is young and dynamically evolving �eld of scien-
ti�c research. Soft robots are di�cult to control and much more complex
for modeling than traditional robots. They are, however, gaining more
and more researchers' interest due to their high potential. Soft robot
body is made of �exible materials and it contains no rigid or discrete
joints, its movement is generated by smooth and continuous deformation
of the body. The softness of the body enables wide range of possible
robot con�gurations which, on the other hand, are di�cult to measure
or predict. There were many shape detection approaches proposed so far,
but most of them provide only discrete manipulator points position. Such
a solution is not su�cient for some applications, since the manipulator
body con�guration in between the measured points is uncertain. In this
paper Authors propose algorithm for continuous detection of the �exi-
ble manipulator shape. The algorithm is based on depth image provided
by sensor such as Kinect. The depth image is processed in steps: detec-
tion of the manipulator central axis, the axis 3D shape reconstruction
and orientation approximation for each point that lies on it. Numerical
representation of the manipulator surface is also generated. The data
obtained can be used for manipulator internal state correction including
its input values and external disturbances.

1 Introduction

Continuum manipulators are widely considered as a replacement for the tradi-
tional robots composed of a rigid parts. They are gaining more and more interest
due to their safety properties and manipulation capabilities unachievable for the
conventional machines. Continuum robots have no traditional prismatic or rota-
tional joints and soft materials they are made of make them safe in contact with
external objects. Smooth deformation of tehir body make them able to gener-
ate motion and shape unreachable for traditional robots. Such adwantages make
soft robots for a variety of tasks that require enormous dexterity and softness
like minimal invasive surgery, soft objects manipulation or tasks that require a
human interaction [1,2,3,4].

Traditional manipulator deformation can be easily detected by encoders
housed in joints. Joints con�guration combined with well de�ned kinematics
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makes rigid robot shape detection easy. Soft robot consists no rigid parts con-
nected by any discrete joints, but any movement is generated by smooth de-
formation of their body. Because of that soft robot's kinematics is much more
complex. Another issue is that any external force applied to the manipulator
causes a distributed deformation, that can not be neither easily measured nor
predicted or modeled. Moreover there are no relevant sensors available for proper
shape detection. Many sensors were proposed but since soft robot can deform
to very complex shapes the data they provide individually is not satisfying for
e�ective shape reconstruction [5,6,7]. Due to above issues, soft robot con�gura-
tion detection is a complex task and requires much more e�ort when comared
to any traditional devices.

In this paper we propose a custom shape reconstruction method for a contin-
uum manipulator of a cylindrical shape. The method is based on a depth image
provided by a single Kinect sensor. The method does not require any expensive
tracking systems or sensors and provide continuous con�guration approxima-
tion. The method was developed for the Sti�-Flop [8] manipulator for modeling
validation purposes.

The data obtained by the algorithm can be used for manipulator control loop
closure, modeling validation purposes, learning and other soft robotics related
purposes.

2 Manipulator description

The algorithm presented in this paper has been designed for a cylindrical contin-
uum manipulator [8], Figure 1. The manipulator's body is assumed to be smooth
and to have constant diameter value along its length.

Fig. 1: Single module of Sti�-Flop manipulator

The con�guration of such manipulator can be described in many di�erent
ways. Most popular methods are based on Constant Curvature approach. Such
methods assume that the robot can be divided to a modules and each of the
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module can be de�ned by a fragment of a circle using its length, curvature and
curvature direction [9].

Constant curvature assumption is not always ful�lled and thus more complex
methods has been proposed such as very general �nite method elements analyzes
or custom kinematics models based on physical principles [10,7].

In this paper we use 3D curve de�ned by a set of points to describe the
manipulators backbone shape.

3 Algorithm

3.1 The depth image data

The Kinect senor used for this work provides a depth image. Depth image can
be expressed as a gray-scale image with a distance information coded in each
pixel value, Image 2a. 3D point position corresponding to each image pixel can
be retrieved by using a set of two linear equations. Due to that the data can be
processed in convenient image format and then converted into 3D space.

3.2 Algorithm steps

The subsequent steps of the algorithm has been presented in Figure 2b. Using
depth gray-scale image, the manipulator is separated from the background using
adaptive thresholding. As the manipulator base position is usually well de�ned
it is used as the starting point for thresholding procedure. The segmentation
result and source image is presented in Figure 3.

Using the segmented depth image a projection of the manipulator center-line
on the image plane (ridge) is found. The ridge detection is made in two steps:
an intersection of two paths starting form a random points (Figure 4a in the
manipulator projection is chosen as an initial point on the ridge, Figure 4b. The
paths are de�ned by a gradient-like procedure described below. When the initial
point is found the ridge is propagated up and down along the manipulator's
body, Figure 4c. The hinge propagation procedure is similar to the gradient-like
procedure used for the initial point detection; the algorithm moves step by step in
a direction indicated by the currently processed pixels spread on a circle around
the current position (1). The processed pixel values are considered as a function
of angle. There are two minima expected in such a function as the considered
pixels are located on a cylindrical manipulator's shape, Figure 5. Since the depth
data is discrete and noisy the direction determined by a minimum of (1) does
not assure any reasonable results. Thus a continuum function (2) is �tted to the
data and its extrema are used for further analysis.

f(ϕ) =
p(x+ rcos(ϕ), y + rsin(ϕ))− p(x, y)

r
(1)

where p(x, y) denotes the value of the pixel at x column and y row of the image,
r stands for the radius of the circle the pixels are located on.
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(a)

Depth image

Segmentation (adaptive thresholding) 
and filtration

Ridge detection

Set of planes perpendicular 
to the ridge generation

Generation of circles on the planes

Manipulator's central axis reconstruction

Manipulator's surface reconstruction

Manipulator's configuration

(b)

Fig. 2: a) Kinect sensor data [11], b) algorithm �owchart

(a) (b) (c)

Fig. 3: a) gray-scale depth image, b) 3D point cloud, c) points after background
�ltration
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up and down ridge 
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initial ridge 
point
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Fig. 4: Ridge detection procedure; a)random points as a starting positions,
b)intersection of gradient-like paths as a starting point for the ridge, c) ridge
propagation

f1(ϕ) = a1cos(ϕ+ a2) + (a3ϕ+ a4)cos(2ϕ+ a5) + a6 (2)

f2(ϕ) = a7cos(ϕ+ a8) + a9 (3)

where a1, a2...a9 stand for the optimized values.
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Fig. 5

The r value is crucial since too small r value may cause undesired function
(1) shape, Figure 5. This is because the derivate of cylinder surface distance
to the sensor plane around the considered point equals zero in the cylinder
radial direction. The r value is chosen to assure both expected minima to be
visible in the plot. As both minima are initially determined, the data is processed
again for the ϕ variable limited to a small value around the minima. For those
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values another function (3) is �tted in order to precisely calculate next iteration
position. This limitation is necessary since the whole range �tting is vitiated by
a signi�cant error and the �tted extrema do not perfectly correspond with the
data. The results of initial and �nal minima detection is presented in Figure 6.

(a) (b)

Fig. 6: Minimas detection precision visible: a) preliminary detection for the whole
circle, b) precise minimum determination for a limited angle, much more data
taken into account

Using the path propagated along the manipulator's image the 3D ridge shape
is computed. Once that is done, the 3D manipulator surface is splited by a set
of planes. Each plane corresponds with a point of the ridge and is perpendicular
to the ridge at that point. All the points from the manipulator's surface being
closer to the plain than a threshold value are marked for further computing that
is circles �tting. Each �tted circle corresponds with a manipulator cross-section
contour. After the contours are de�ned their centers are �ltered and connected
to compose the manipulator's central axis. As the central axis is known, the
manipulator's surface is reconstructed. The subsequent stages are presented in
Figure 7.

4 Conclusion

At the moment the publication was written, the algorithm validation against a
real manipulator was not yet performed due to the material properties of the
available manipulator. The manipulator was made of a transparent silicone that
is not properly detected by the Kinect sensor.

Using the presented approach we managed to reconstruct the shape of a
cylindrical curved object with 40mm of diameter, however, the algorithm is not
stable and its performance depends on the initial point choice, the object shape,
dimension and its distance from the sensor. The data provided by the sensor is
noisy and the depth resolution is low. Moreover the noise is not easy to �lter as
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(a) (b) (c)

(d) (e) (f)

Fig. 7: Subsequent stages: a) raw data points, b) ridge detected (yellow dots), c)
data classi�cation for circles �tting (green points) d), e) �tted circles, f) �tted
surface

its distribution depends on the pixel position and is related to the pattern the
sensor projects on the object. Due to the poor data quality the algorithm often
fails.

Another issue is that the algorithm does not behave in a stable way at the
edges of the object where the data is not complete and even more noisy. The
backbone in these areas is often not properly reconstructed. In the presented
work we also assumed lack of any discontinuities, that is usually not ful�lled, as
most of the manipulators have some connections between the continuum parts
that would probably introduce some additional errors.

The proposed algorithm shows a potential to properly reconstruct the shape
of curved cylindrical objects, however, it can not be used for manipulator's shape
reconstruction due to low stability and very high noise to signal ratio.
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