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1 Introduction

The widespread use of online search engines, most prominently Google, is producing big and fast growing sets

of micro-level data that can be used for empirical research. Research into online search behavior is currently

also a fast growing field across a range of disciplines.

Empirical research on online search started with attempts to trace the onset of epidemics of influenza and

similar diseases (Polgreen et al., 2008; Ginsberg et al., 2009).1 Data that aggregate search intensity for specific

topics, such as the flu, have proven to be an important innovation. For instance, data from Google Trends (GT)

have been used to forecast consumption (Vosen and Schmidt, 2011; Choi and Varian, 2012), unemployment

(Pavlicek and Kristoufek, 2014), real estate transactions (Dietzel et al., 2014), stock markets (Preis et al.,

2013), and a number of political and governance related topics (Mellon, 2013, 2014; Mathews and Tucker,

2014). The field is growing rapidly: Nuti et al. (2014) report a seven-fold increase in publications using GT

data in health care research between 2009 and 2013.

The breadth of the cited work shows that online search data are useful in many different contexts, due to

the diversity of online activities and related search motives. This ‘catch-all’ characteristic of online search

represents an opportunity for researchers in many fields. But it also creates a challenge: the observable

aggregate data on search behavior result from a mix of distinct motives, such as search to inform a purchase,

search for information post sale and search motivated by fandom. Identifying pre-purchase search intensity

from aggregate search by using specific search terms is currently the only method available when predicting

product sales or other outcomes from aggregate sales data. This approach can fail as research on prediction of

flu outbreaks has shown.

This paper shows that a model of the three search motives outlined above can be used to derive an empirical

specification identifying the effect of pre-purchase search on sales using aggregate search data. The model also

predicts biases that arise if only product specific search terms are used to collect data. These biases are avoided

by adding lagged sales and specific non-purchase search measures identified by the model to the empirical

specification. The modeling approach we propose does not require collection of product characteristics, such

as prices. With one exception, Hu et al. (2014), the importance of structural assumptions for identification has

gone unnoticed in the literature on use of aggregate search data.

We apply our model to data on online search for products and product-level sales in the German and

UK car markets. The objective is to demonstrate how aggregate online search data can be used to predict

product-level car sales. We collect data on product searches and complement this with data on brand search

and product level sales. Additionally, we control for the exogenous introduction of scrappage subsidies for

cars in the aftermath of the 2007-2008 Global Financial Crisis that affected search behavior. We use the fact

that the scrappage subsidies affected both sales and search. That is, controlling for the direct effect on sales,

the scrappage event shifted the ‘intention to buy’ component of search, helping us to identify this component

1The use of Google Trends data in this context has recently been criticized by several authors pointing to poor documentation of
the underlying flu trends data provided by Google (Ormerod et al., 2014; Santillana et al., 2014; Lazer et al., 2014).
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in the aggregate search data.

Apart from identification, search data also pose specific challenges to estimation and inference. These

problems arise from specific data properties whereby searches are (i) highly persistent over time (serial cor-

relation), (ii) potentially subject to permanent shocks (non-stationarity) and (iii) potentially correlated across

searches but to different extent (cross-section dependence). In addition, search data typically offer many po-

tential measures of the same or similar underlying construct. These data properties are commonly referred

to as tall (large T ) and fat (large N ), characteristics well-known in the analysis of ‘Big Data’ (Varian, 2014).

Online search data pose both challenges: daily, weekly or monthly data on searches are available for many

different combinations of terms used to search for the same product. Each combination of terms can lead to a

slightly different aggregate series. In addition, the data for multiple products can easily be aggregated to form

panels, creating large T , large N panels.

Explicitly modeling the different search motives that give rise to aggregate search data allows us to address

the fatness of the data. The resulting model of search behavior restricts attention to specific search terms to

identify each search motive. This approach, therefore, dispenses with the need to use complex and time-

varying queries that attempt to identify specific components of the aggregate search data.

Tallness creates challenges for estimation and inference: online search data are non-stationary, serially

correlated, and subject to cross-sectional dependence. If these challenges are ignored models using such data

will be biased and inconsistent. We find these biases to be important in our applications. All of the challenges

noted can be addressed with estimators developed for largeN , large T panel data (Pesaran, 2004, 2006; Baner-

jee et al., 2010; Pesaran and Tosetti, 2011; Eberhardt et al., 2013; Hsiao, 2014; Chudik and Pesaran, 2015).

To address the heterogeneous relationship between search and sales across products, we apply Common Cor-

related Effects Mean Group (CCE MG) estimators to our empirical model and show that the estimation of the

model using OLS or fixed effects estimators leads to misleading interpretations of the underlying relationships

in the data.

We use data from two separate car markets, the UK and Germany, to show that the problems we identify

are not the result of the idiosyncrasies of a particular market. There are a number of differences in the data

for the two markets which make for an interesting comparison. Data from the UK is available at weekly

frequency, yielding taller data than the German data, which are available at monthly frequency. Also, the

UK car market has a very strong bi-annual cycle, which is not evident in the German data. Nonetheless,

the methodological problems we identify apply to both markets. We also find that the added tallness of the

UK data makes empirical modeling more challenging. This confirms that less aggregated data contain richer

dynamics (Rossana and Seater, 1995).

Our results confirm that omitted variable bias affects regressions of search on sales if search motives are

not properly modeled. These effects are particularly significant where the scrappage subsidy is concerned.

We also find that a failure to control for common correlated effects that we cannot directly observe, such as

changes to Google’s algorithms, changes to firms’ uses of online marketing or changes to demand for specific

3



types of vehicles can significantly bias results. Overall we find that product level search is a highly significant

and important predictor of product level sales.

Data capturing consumers’ internet searches have been related to demand in a number of recent papers.

Hu et al. (2014) study the interaction between search and advertising using aggregate search engine data to

analyze a long panel (T > 100) of product level sales and advertising data. They also model search, but do not

consider the empirical challenges presented by the tall nature of their data. De los Santos et al. (2012) throw

light on how consumers search using a panel of individual level data. More generally, a better understanding

of consumer exposure to advertising and consumer search behavior is emerging as an important factor in

studies of product demand (Sovinsky Goeree, 2008; Moraga-González et al., 2015; Helmers et al., 2015). Our

analysis contributes to this literature by showing how different motives buried in aggregate search data can be

isolated and used to predict economic outcomes such as product-level sales. We also contribute to the literature

by pointing to three data challenges that are likely to be present in any high-frequency online data, such as

Google search, Twitter or Facebook data, but have gone largely unnoticed in the literature. We test for the

presence of these problems and use recently developed panel estimators for large N and T to address them.

The next section of this paper provides a brief dicussion of online search behavior and the data it generates.

Our model of search motives is discussed in Section 3, where we derive an empirical model. The data used

are presented in Section 4. Section 5 provides results. Section 6 contains our conclusions. The appendices

provide details on data collection and construction.

2 Search Data

The use of the internet has become widespread; while only between 30% and 40% of the population in the

U.S. used the internet in 2000, the share reached around 87% in 2014 (Purcell et al., 2012; Lebo, 2014). Use

of search engines and email are the most common reasons for people to access the internet by a wide margin.

For example, in the U.S. 54% of users currently report using search engines at least once a day.2 The vast

majority (83%) of all U.S. internet users reported in 2012 using Google as the main search engine. Google

had a market share of search of around 95% in Germany3 and 88% in the UK4 in 2015.

The Google search engine is used to search for information ranging from entertainment to work. A sig-

nificant share of searches is for information on goods and services that people are interested in buying on-

and offline. In Germany 90% of internet users search for information on goods and services on the internet

and 75% have bought such goods and services over the internet within the last year (Statistisches Bundesamt,

2015). In the UK 85% of internet users compare goods and services online, 87% report buying online (Dutton

et al., 2013).
2For the UK there is some evidence that there is a growing group of users who report mainly going to specific websites, but this

group currently stands at 21% of all internet users, indicating that the overwhelming majority of users rely on search engines very
regularly.

3Compare http://www.seo-united.de/suchmaschinen.html, accessed on the 6.8.2015.
4Compare http://theeword.co.uk/info/search engine market/, accessed on the 6.8.2015.
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Search engines such as Google aggregate information on individual searches and make the data available

to analysts and researchers. Google makes aggregate search data publicly available through GT. It provides

information on the percentage of Google web searches for a given word or a combination of several words

compared to the total number of Google searches taking place at the same time. Data series date back to the

1st of January 2004 and are available at daily, weekly, or monthly intervals.

The GT interface allows comparisons of search terms across different time periods and different locations.

Multiple search terms can also be compared to each other and up to five different terms can be added and

compared within the same query. Moreover, the use of operators makes it possible to look for combinations

of different search terms (searches including each of the terms, at least one of the terms, or excluding one

the terms). Additional flexibility is offered by filters for 30 different search categories and 250 subcategories

(Section 3.3 provides more details).

For research purposes search data are overly aggregated, despite considerable flexibility in extracting

search data from GT. Consider searches for the term Apple. The raw data provided by GT for this key-

word conflate searches for the fruit with those for the firm’s website. Similar problems arise in our empirical

setting, the automotive industry; think for example of the Jaguar brand or the Volkswagen Beetle car model.

This problem of how to interpret GT search indices extends beyond homonyms: keywords used to search for

information related to a product or illness may change over time making a specific index less reliable, as was

the case for the flu (Santillana et al., 2014).5 In the case of product search we believe this problem to be

generally less acute, as long as only the product name is used to specify the search index.6

Then there is also the difficulty of ascertaining the motives for searches observable in aggregate data. This

is particularly important where the focus is on predicting an economic outcome such as product sales using

the volume of search. For example, if a particular product is iconic and expensive, search volumes may be

high, while sales measured in units, will be much lower than those of less iconic products. This problem is

compounded when the available aggregate search index reflects a combination of search motives: searches

motivated by fandom, searches motivated by interest in purchasing a product, searches motivated by news

about a product or associated brand, searches due to post-sales problems with a product etc.

To see why this creates challenges to empirical research beyond potentially random measurement error,

consider the example of product sales. A researcher might be interested in predicting product sales based on

Google search volumes. The required assumption here is that consumers search on Google before purchasing

a product. It is however possible that consumers search for a product after having purchased it and need

additional information about it, for example on how to use it. If these two different search motives cannot be

disentangled, there is potential for reverse causality.

The following section develops a model that formalizes these problems and helps link them to the empirical

5Brynjolfsson et al. (2014) suggest a crowd-sourcing solution for this problem where a random sample of internet users suggest
keywords that they associate with a concept.

6Searches for combinations of product names and words such as ‘dealer’ or phrases such as ‘buy online’ reveal shifting patterns
of sourcing for products over time. These were not our focus so we removed these additional terms from our searches. For more
discussion see Appendix A.

5



models that deal with problems arising from the characteristic data properties of online search data, the length

of the time series and cross-sectional correlation.

3 Methods

In this section we model three principal search motives and show how pre-sale search can be identified and

used to predict product-level sales. We also discuss how product level-data necessary for this analysis can be

obtained and show how our model can be estimated using weekly and monthly time-series data.

Throughout the section we focus on the relation between two variables: yi,t capturing sales of a product

and gi,t capturing aggregate search intensity for these products on a search engine, for example GT.

3.1 Modeling Sales and Search

To begin with, consider a simple model of all searches for a product on a search engine. We disaggregate

search for product (i) at a given time (t), gi,t, into three components: search driven by need for information

before a purchase sai,t, after a purchase spi,t and search driven by interest sfi,t in the product unrelated to a

purchase:

gi,t ≡ sai,t + spi,t + sfi,t . (1)

Note that Equation (1) could easily also accommodate other search motives. Demand for a product is a

function of past sales and demand resulting from information found during a pre-sale search:

yi,t = β0 +
∑
l=1

βt−lyi,t−l + βas
a
i,t + ui,t . (2)

Past sales will strongly influence current sales for products that are bought regularly by a proportion of

consumers. These buyers have no need to search for information about the products on offer in the market.

Less frequent customers are more likely to need information ahead of a purchase and will therefore search the

internet for such information.

Since the intensity of each type of product related search, sai,t, s
p
i,t, and sfi,t, are all unobservable, we assume

that they can be modeled as a function of observable product characteristics as follows:

sai,t =α0 + αpPi,t + αvVi,t + αbBi,t + vi,t (3)

spi,t =π0 + π1

R∑
r=1

δt−ryi,t−r + wi,t (4)

sfi,t =φ0 + φbBi,t + ei,t (5)

where Pt is the price of the product, Vt is a vector of objectively measurable product characteristics and Bt is
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the value attributable to the product on account of the attached brands. vi,t, wi,t, and ei,t are i.i.d. errors.

In this model, the volume of search for pre-purchase information is driven by the physical characteristics,

the price and the product’s brand recognition among consumers Bi,t. Even consumers who have little knowl-

edge of these characteristics will find out about them in the course of their search and will refine their search

accordingly. This is reflected in aggregate search data as measured by GT. Post-purchase search results from

the installed base of products, which is a function of past prices, characteristics and brand recognition, viz.

Equations (2) and (3). Search not motivated by purchase is assumed to be driven only by brand recognition

among consumers Bi,t.

Choi and Varian (2012) suggest using specific keywords to isolate sai,t. Hu et al. (2014), who focus on

pre-purchase searches, attempt to further exclude post-purchase and fandom searches by excluding searches

that involve specific keywords indicating an interest in repairs, spare parts and the like. Reliance on category

filters and attempts to exclude searches that do not precede a purchase can be problematic if Google alters

the underlying algorithms or if consumer behavior changes so that new keywords need to be added to the

exclusion list. Over time the set of keywords needed to exclude the wrong types of search is likely to change.

This problem is at the root of the most recent criticisms of the attempts to predict outbreaks of epidemics using

search engine data (Lazer et al., 2014).

We avoid this problem by building on the above model to analyze the link between pre-purchase search and

sales. We use only the most general GT indices and discuss what can be identified using these data. Although

we cannot separately identify from the available aggregate data search that arises before a purchase from the

other types of search, we can still model the impact of search on sales by combining the above equations:

yi,t =β0 +
∑
l=1

βt−lyi,t−l + βa

(
gi,t − π0 − π1

R∑
r=1

δt−ryi,t−r − wi,t − φ0 − φbBi,t − ei,t

)
+ ui,t .

yi,t =[β0 − βa(π0 + φ0)]︸ ︷︷ ︸
γ0

+
L∑
l=1

[βt−l − βaπ1δt−l]︸ ︷︷ ︸
γt−l

yi,t−l + βagi,t + ui,t − βa (wi,t + φbBi,t + ei,t)︸ ︷︷ ︸
νi,t

.

yi,t =γ0 +
L∑
l=1

γt−lyi,t−l + βagi,t + νi,t (6)

This model shows that the coefficients on lagged dependent variables may be negative, if the positive effects

of persistence are weaker than those of post acquisition searches.

More importantly, by its definition (1) product search gi,t is correlated with consumers’ brand recognition

Bi,t. Absent a measure for the latter, the coefficient on the search index βa is likely downward biased. To

avoid this, we estimate our specification including a measure of brand recognition Bi,t:

yi,t =γ0 +
L∑
l=1

γt−lyi,t−l + βagi,t + βbBi,t + εi,t (7)

7



Addressing Endogeneity

We deal with the potential for bias of the coefficient on product search in two ways: first, we obtain another

search index from GT which reflects searches for the manufacturer brand under which a given product is

sold. For most car models this will be the brand name consumers are most likely to attach to the model and

a brand level search index will yield a good proxy for Bi,t. Second, we exploit a quasi-natural experiment

in the form of a short-term subsidy for purchase of new cars (Si,T ).7 Although the subsidy will have a direct

effect on sales, its main advantage is that it shifts pre-sale search without being correlated with fandom or

post-purchase searches. Hence, the subsidy has two effects: First, it increases demand for cars that become

significantly cheaper as a consequence of the subsidy. Second, it affects pre-sale search by affecting consumers

purchasing decisions.

The direct effect leads us to rewrite the demand model (eqn. (2)) to include the scrappage search effect

(sSi,t):

yi,t = β0 +
∑
l=1

βt−lyi,t−l + βas
a
i,t + βSs

S
i,t + ui,t . (8)

The indirect effect means that we can rewrite pre-purchase search as:

sai,T =α0 + αp (Pi,T − Si,T ) + αvVi,T + αbBi,T + vi,t ,

⇔ sai,T =sai,T−1 − αpSi,T , (9)

where T is the date at which the subsidy is announced. As the subsidy is temporary, sai,T−1 will reflect the

normal level of ex-ante search and we can then write the product search index after the subsidy has been

announced as follows:

gi,T = sai,T−1 + spi,T + sfi,T − αpSi,T︸ ︷︷ ︸
g∗i,T

. (10)

Note that αp < 0, if the law of demand applies to the products under consideration, so that gi,T is positively

correlated with the level of the scrappage subsidy.

These considerations mean that we adjust our estimation model (7) as follows:

yi,t =γ0 +
L∑
l=1

γt−lyi,t−l + βagi,t + βbBi,t + βSs
S
i,t + εi,t (11)

If we do not control for the subsidy event, the positive correlation between sSi,t and g∗i,t implies that βa will be

upward biased. At the same time, the scrappage effect shifts gi,t by shifting pre-sale search sai,t.

7Section 4 provides background detail on the scrappage subsidy.
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3.2 Estimation

Given the product-level model outlined above we turn now to a discussion of how that model can be consis-

tently estimated with large N and T panel data. GT data are available at daily, weekly or monthly frequency

since 2004 and can be obtained for panels of search terms, e.g. names of car models or brand names. The high-

frequency with which search data are available means that high levels of serial correlation and non-stationarity

are likely to arise (Mellon, 2013). This applies to both the GT search data and to sales data. Hence, working

with panels of GT data requires recent econometric methods that are currently not widely used (Pesaran, 2006;

Banerjee et al., 2010; Pesaran and Tosetti, 2011; Hsiao, 2014; Chudik and Pesaran, 2015).

The estimation of individual time-series, which is a common approach with high frequency data in finance

and macro-economics, discards valuable information available from the panel dimension of the data. Given the

ease with which panels with relatively large N can be constructed from GT data, the estimation of individual

time-series is also impracticable.

The solution we outline below is to use Mean Group estimators (Pesaran, 2006), to control for common

correlated effects using cross-section averages of the dependent and explanatory variables, to adjust for sea-

sonality and to estimate error correction models that identify short- and long-run effects of search on sales and

are robust to any remaining non-stationarity.

Seasonality and Serial Correlation

Equation (11) contains L lags of the dependent variable to capture persistence and post-purchase search.

Wooldridge (2012) notes that residual serial correlation in this kind of model is an indication that not enough

lags of the dependent variable have been included in the specification.

Another source of serial correlation is seasonal variation in the demand for a product, which can be ob-

served for almost any product. In our empirical application for example we see strong signs of such seasonal

variation. Figures 1 and 2 show registration data (grey) and a search index (coloured) for the manufacturer

name relative to 2004. The series for Toyota/BMW are shifted (down/up) by one unit in order to make the

figures easier to read. The graphs suggest correlation between search and registration data over time; peaks of

the search data generally predate peaks in the registration data.

Seasonal effects can be removed with methods like the X-13-ARIMA SEATS used by the U.S. Census

Bureau or the Bank of England. Unfortunately, these methods affect the reliability of unit root tests applied to

the transformed series (del Barrio Castro and Osborn, 2014).

We show below that removing seasonal effects by differencing each series using annual lags is effective.

Results for data without seasonal adjustment are also reported. The transformed data are denoted υ̃i,t ∈

{ỹi,t, g̃i,t, B̃i,t, s̃S,i,t} where υ̃i,t = υi,t − υi,t−12 in the case of monthly data and υ̃i,t = υi,t − υi,t−52 in the case

of weekly data.
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Co-integration

In section 4.3 we demonstrate that sales and the search index data are both affected by high levels of serial

correlation. This makes it highly unlikely that the data series are stationary. Non-stationarity of the data series

will lead to spurious correlation between variables and inference will be unreliable (Granger and Newbold,

1974).

To address the problem of non-stationarity we transform the auto-regressive distributed lag (ARDL) model

set out in equation (11) by transforming the dependent variable into a first difference in case of monthly data
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(k = 1) or a fourth difference in case of weekly data (k = 4) of the deseasonalized data:

ỹi,t − ỹi,t−k = γ0 − (1− γt−k) ỹi,t−k +
L∑

l=1,l 6=k

γt−lỹi,t−l

+
M∑
m=0

βg,t−mg̃i,t−m +
N∑
n=1

βB,t−nB̃i,t−n +
O∑
o=0

βS s̃
S
i,t−o + εi,t . (12)

This further differencing helps to stabilize the mean of the variables in the model. The model also includes

lags of the product, brand and scrappage search indices to allow for lags in the impact of these search indices

on sales.

A transformation of the dependent variable and the product search variables in this model results in an

error correction specification, allowing us to estimate short- and long-run effects of product level search on

sales:

4ỹi,t = γ0 − (1− γt−k) ỹi,t−k +
L∑

l=1,l 6=k

γt−lỹi,t−l + βg,t−k+14g̃i,t−k+1 + λg,t−kg̃i,t−k

+
M∑

m=1,m 6=k

βg,t−mg̃i,t−m +
N∑
n=1

βB,t−nB̃i,t−n +
O∑
o=0

βS s̃
S
i,t−o + εi,t . (13)

This specification corresponds to Equation 16 in Ericsson and MacKinnon (2002), who note that cointegration

of ỹi,t and g̃i,t is implied by − (1− γt−k) < 0. Gengenbach et al. (2015) provide critical values for the t-

statistic on this coefficient for panel data, which has a non-standard distribution. In this representation, the

speed of adjustment to long run equilibrium is captured by (1− γt−k) and the long-run effect of search on

sales is captured by βg,t−k+1

(1−γt−k)
.

Note that we also test whether the brand-level and scrappage search indices are cointegrated with sales.

We find no evidence to support this.

Unobserved Common Factors

The model of search developed here does not require that the researcher observe anything about the charac-

teristics of the products being studied as long as the researcher’s interest does not go beyond the relationship

of search and sales. On the other hand, poor measures of consumers’ brand recognition and of any shocks to

product demand such as the scrappage subsidy will bias the coefficients of the model. Given the large num-

ber of products that may potentially be incorporated into an analysis, it is likely that subsets of these will be

affected by unobserved common shocks leading to cross section dependence and biased coefficients.

To remove cross section dependence from unobserved common factors we apply the Common Correlated

Effects Mean Group (CCE MG) estimator suggested by Pesaran (2006) and extended to the dynamic panel

setting by Chudik and Pesaran (2015). The Mean Group estimator averages coefficients from the N time

series making up a panel, allowing for heterogeneity in the intercept and slope parameters within the panel.
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Pesaran (2006) shows that augmenting this estimator with cross-section averages of the dependent and the

explanatory variables, removes correlations between unobserved common factors and the main variables of

interest. Chudik and Pesaran (2015) then demonstrate that the CCE MG estimator can be extended to dynamic

panels with weakly exogenous regressors. They observe that a suitable number of lags of the cross-section

averages should be incorporated in the empirical model in this case. The number of lags required is the integer

part of the cubic root of the length of the time-series, in our case this is 5 for the German data and 7 for the

UK data. We apply this estimator to our data to account for the presence of unobserved common factors.

An important advantage of these estimators from the perspective of the applied researcher is that they are

simple to use and allow the researcher to be agnostic about the structural interpretation of any unobservable

common factors. 8

The final representation of the empirical model we estimate is:

4ỹi,t = γ0 − (1− γt−k) ỹi,t−k + ψ4y,t4¯̃yt +
L∑

l=1,l 6=k

(γt−lỹi,t−l + ψy,t−1−l ¯̃yt−l−1) + λg,t−kg̃i,t−k

+ βg,t−k+14g̃i,t−k+1 + ψ4g,t−k4¯̃gt−k+1 + ψg,t−k ¯̃gt−k +
M∑

m=1,m 6=k

(βg,t−mg̃i,t−m + ψg,t−m ¯̃gt−m)

+
N∑
n=1

(
βB,t−nB̃i,t−n + ψB,t−n

¯̃Bt−n

)
+

O∑
o=0

(
βS,t−os̃

S
i,t−o + ψS,t−o ¯̃s

S
i,t−o

)
+ εi,t . (14)

Here the ψ coefficients indicate a cross-section average term. This estimator may include a large number of

cross-section average terms as well as lags of the dependent variable and of the three search indices. We have

sought to restrict the number of lags used as much as possible in order not to loose too many observations,

while still controlling for cross-section dependence. The tests used to identify the adopted lag structures are

reported and discussed in Section 5.2 below. The testing process involved iterative removal of lags that did

not contribute to good performance of the model, starting from the most extensive model. We tested a wide

range of specifications and have included a number of tables with particular alternative specifications in the

appendix to demonstrate robustness of the models presented in the main text.

Chudik et al. (2015) show that a cross-sectionally augmented distributed lag model can be used to directly

estimate the long-run coefficient we obtain from the ARDL model. One advantage of their proposed estimator

is its robustness to misspecified dynamics and serial correlation. We supplement our results below with those

from their estimator and test whether the long-run parameters resulting from both approaches are significantly

different in the panel. They suggest that the following model be estimated:

ỹi,t = ω0 + θg,tg̃i,t +
M∑
m=1

(δg,t−mg̃i,t−m + φg,t−m ¯̃gt−m)

8We implement the estimator using the package xtmg in Stata, but do not use the CCE option. Rather we augment the MG
estimator with cross-section averages which we programmed and tested to control the precise lag structure of the estimator.

12



+
N∑
n=1

(
δB,t−nB̃i,t−n + φB,t−n

¯̃Bt−n

)
+

O∑
o=0

(
δS,t−os̃

S
i,t−o + φS,t−o ¯̃s

S
i,t−o

)
+ εi,t . (15)

Here θg,t is the coefficient capturing the long-run effect of the product level search index on sales and M = 4

for the German data, while M = 6 for the UK data as proposed by Chudik et al. (2015).

3.3 Google Trends

The search indices we use are obtained from GT. Here we briefly discuss a number of methodological issues

that arise from this source of data.

First, the GT search indices are computed using a sampling method leading to variations of a few percent

from day to day. Moreover, because of privacy considerations, only search queries with meaningful (Google

does not specify the threshold) volume are shown to the public.9 The data are normalised, i.e. the raw search

counts are divided by an index of the total volume of search for a given area and time of search. Additionally,

the data are scaled so that every data point for a given query is presented relative to the maximum value that

the query will return multiplied by 100.

Second, GT provides data after 2004 or the date at which the search intensity for a particular term is

sufficiently large. Depending on the search volumes, series are provided either at the monthly, weekly or daily

level. Due to the normalisation, it is not possible to accurately aggregate data to a common frequency level,

which limits the comparability of the different search terms (see also Appendix C).

Search queries are limited to a maximum of five terms in any one search, although each term may be quite

complex: it can involve up to five separate search terms that are linked by either an or (disjunction) or an and

(conjunction) operator.

Furthermore, GT rounds numbers to integer values. This restricts the information obtained from a search

if the researcher downloads several series together and relative search volumes for one or more of these are so

low that the series only ever consists of numbers below 10. By construction the detail regarding the variability

of such a series is much lower than that for the series that vary between 10 and 100 in the same search.

In practice, many features of GT (e.g. in terms of output format, restrictions of queries etc.) tend to evolve

rapidly, which poses problems for consistency over time. We have generally downloaded each product or

brand level index together with one other index common to all queries. This allowed us to ensure that the

data we obtain is normalized in a consistent way. For our purposes, the problem of volume thresholds is less

relevant and we have simply excluded products for which we could not obtain enough data on search. In our

context, these are cars for which sales volumes are also low.
9Stephens-Davidowitz (2013) proposes a method that provides data even on such low volume searches by jointly searching for

the low volume term and a higher volume term.
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4 Data

In this section we describe data on automobile sales from the UK and Germany. Sales are measured using

registration data at monthly (D) or weekly frequency (UK). The availability of weekly data in the case of the

UK demonstrates how the combination of high frequency search engine data with extremely detailed official

data can provide information that is much more detailed than data on car sales that have previously been used.

One question we also address here is whether the triple challenge of serial correlation, non-stationarity and

common factors is exacerbated by this.

4.1 Variables

The datasets described here contain four variables: sales at the product level, measured on the basis of official

registrations; search indices at the product level to measure product level search, search indices at the manu-

facturer level to capture consumers’ valuation of brands, and search indices capturing search induced by the

scrappage subsidy.

Sales The dependent variable is based on product registration data collected by national agencies in the UK

and Germany. Data for the UK were obtained from the Department of Transport (DoT) on the basis of national

data on MOT tests. Data for Germany were downloaded from the website of the KBA. Both sets of data are

available from 2004 onwards. As the first MOT test takes place 3 years after the first sale of a car, the UK data

end in 2011. The data reported by KBA end in 2014 (for details see Appendix D).

Search Indices We measure search intensity at the product level and at the the brand level. The indices we

obtain are measured relative to a popular product or brand: we search simultaneously for the product/brand in

question and for a reference product/brand. The reference product/brand anchors all search indices included

in our data (for more information see Appendix B).

The product level search index encompasses pre-purchase, post-purchase, and non-purchase searches by

product fans as set out in the model in Section 3. The brand level search index measures consumers’ brand

recognition.

Scrappage In 2009 the governments of Germany and the UK each introduced a temporary scrappage sub-

sidy. These subsidies were introduced to encourage purchases of new cars and the scrappage of older ones.

The subsidies were part of both governments’ reactions to the significant fall in economic activity that followed

the bankruptcy of Lehman Brothers in 2007 and the ensuing turmoil in the financial markets around the world.

Each government had slightly different objectives as the German car market is dominated by manufacturers

owned by German corporations, whereas this is not the case in the UK.

The subsidies were introduced in reaction to significant lobbying efforts by representatives of the auto

industry in both countries, which took place against the backdrop of similar efforts by representatives of the
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US auto industry to prevent the failures of GM and Chrysler in the context of the US presidential election

campaign of 2008.

In Germany first reports in the national press that the government was considering a subsidy surfaced in

October of 2008. The foreign minister and deputy Chancellor voiced his support for a scrappage subsidy as

the way to support the auto industry in late December of 2008 and the government announced details of the

subsidy in early January of 2009. The subsidy was christened ‘Abwrackprämie’ by the national press, a term

not widely used otherwise.

The German government initially pledged e 1.5 billion to the subsidy program, promising to subsidize the

purchase of a new car with e 2500, if a car older than 9 years was scrapped. As the uptake of the subsidy was

significant, by March car sales were 40% higher than a year before and funds were likely to be exhausted, the

government announced a top up of the program with a further e 3.5 billion.

The UK government followed suit with a similar scrappage scheme, however this was less generous as car

manufacturers were required to match the subsidy offered by the government. Also, the amount pledged by

the government was much lower, reflecting the scepticism of parts of the government for this form of subsidy.

The announcement of the subsidy had an immediate effect on subsidy related searches. The search index

based on the names of these subsidies is extremely specific, as such searches are not observable either before

or after the period in which subsidies were paid out. The index identifies the causal effect running from search

to sales of a product better than either of the other indices we employ as it reveals the intentions of those

searching more clearly than the product or manufacturer level searches. Figure 3 illustrates searches for the

combination of the name of each manufacturer and the word ‘Abwrackprämie’ in Germany and likewise the

combination of the manufacturer name and the word ‘scrappage’ in the UK.

Figure 3:

0
20

40
60

80
Se

ar
ch

 In
de

x 
Re

la
tiv

e 
to

 V
W

01/04 01/06 01/08 01/09 01/10 01/12 01/14
Month/Year

VOLKSWAGEN BMW FORD OPEL
MERCEDES RENAULT TOYOTA FIAT

Germany: 2004-2014
Google Search Index for 'Manufacturer Abwrackprämie'

0
20

40
60

80
10

0
Se

ar
ch

 In
de

x,
 R

el
at

ive
 to

 V
au

xh
al

l 

02/04 01/08 01/10 01/1201/0902/06
Month/Year

VOLKSWAGEN BMW FORD VAUXHALL
MERCEDES RENAULT TOYOTA FIAT

United Kingdom: 2004-2012 
Google Search Index for "Manufacturer Scrappage"

These two subsidy programs offer an interesting chance to compare how the announcement of temporary

subsidies in the two countries affected search and subsequently car sales.
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4.2 Descriptive Statistics

The data for the German automobile market are measured at monthly frequency for 127 months. KBA’s

registration data contain 486 product names. There are 50 brands of which Peugeot has the highest number of

distinct model names (24) and Bentley and Lotus each have the lowest (1). We exclude all those months in

which we do not observe any search information for a product from the sample. We did not get search data

from GT for 182 products and have excluded a further 99 due to short length of the time series on sales. This

leaves 205 product names in the data.10

Table 1 provides summary statistics for product registrations and the three search indices. We report

statistics for the raw data and for the data which we have adjusted for seasonality by differencing against

the same month one year prior. The descriptive data reveals a slight negative trend in the monthly sales of

cars across all products and positive trends for the product and brand search indices. These are statistically

significant at the 1% level; we report the t-statistics for these tests in the table.

The data for the UK automobile market are measured at weekly frequency for 463 weeks and 363 product

names. There are 49 brands of which Mercedes has the highest number of distinct model names (31) and

Bentley, Dodge and Lotus each have the lowest (1).11 We exclude all those products for which we have fewer

than 12 months of sales and three months of consecutive sales in our data. This leaves 226 product names in

the data12.

Table 1: Summary Statistics - Germany, 205 Products, 127 Months

Variable Mean Std. Dev. Min. Max. N t

Registrations 1429.067 2956.753 1 44280 16458

Registrations (s.a.) -77.932 1179.31 -22294 20059 16458 -8.48

Product SI 7.169 10.339 0 100 16458

Product SI (s.a.) 0.575 5.879 -100 100 16458 12.55

Brand SI 36.161 24.711 1 95.75 16458

Brand SI (s.a.) 0.325 5.159 -39.036 38.345 16458 8.07

Scrappage SI 0.688 4.763 0 86.129 16458

Scrappage SI (s.a.) -0.022 6.882 -86.129 86.129 16458 -0.41

Table 2 provides summary statistics for product registrations and the three search indices. We report

statistics for the raw data and for the data which we have adjusted for seasonality by differencing against the

same week one year prior. The descriptive data reveals a slight negative trend in the monthly sales of cars

10Descriptive statistics for all products are provided in Appendix E. A comparison with Table 1 in this section shows that the
negative trend in seasonally adjusted registrations is more pronounced in the sample, and that the brand search index has a higher
mean and lower standard deviation in the sample than in the population. Comparing product search indices with those for the
population is not possible as we did not obtain product level search data for all products.

11We do not use the same set of product names for the UK and Germany as the registration data are reported with different names.
12Summary statistics for all products in the data are provided in Appendix E
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across all products as well as a negative trend for the brand search index. There is a positive trend for the

product search index. These trends are statistically significant at the 1% level; we report the t-statistics for

these tests in the table.

Table 2: Summary statistics - United Kingdom, 226 Products, 389 Weeks

Variable Mean Std. Dev. Min. Max. N t

Registrations 121.125 345.824 0 9291 87914

Registrations, (s.a.) -24.171 203.352 -6834 6652 87914 -35.24

Product SI 13.132 15.257 0 100 87914

Product SI, (s.a.) 0.952 6.783 -92 85 87914 41.59

Brand SI 38.037 20.901 0 100 87914

Brand SI, (s.a.) -1.023 4.906 -58 60 87914 -61.84

Scrappage SI 2.411 12.631 0 100 87914

Scrappage SI, (s.a.) 0 18.177 -100 100 87914 0.00

4.3 Serial Correlation, Stationarity and Common Factors

Regression analysis based on non-stationary time series may reveal only spurious correlations. This section

shows that data on car sales and product search are non-stationary in monthly data. Tables 3 and 4 show results

from Pesaran’s CIPS test (Pesaran, 2007) of non-stationarity for different degrees of serial correlation. The

test is robust to the presence of common factors and serial correlation.

Table 3: Unit Root Tests - Germany, Monthly Data

Sales Product SI

not adj. (s.a.) not adj. (s.a.)

Observations 12, 827 11, 615 12, 827 11, 615

Pesaran 2007 CIPS Test: H0 - All panels are non-stationary

p-value, lags 2 0.000 0.000 0.000 0.000

Z-score, lags 2 −15.87 −17.09 −9.484 −10.15

p-value, lags 4 0.000 0.000 0.003 0.003

Z-score, lags 4 −9.502 −7.398 −2.712 −2.775

p-value, lags 6 0.004 0.000 0.421 0.446

Z-score, lags 6 −2.662 −3.658 −0.198 −0.136

p-value, lags 8 0.973 0.090 0.949 0.292

Z-score, lags 8 1.926 −1.340 1.632 −0.548

The table is based on 101 strongly balanced panels.

Both tables are restricted to those panels for which we have full coverage in our data, i.e. products that

were sold over the entire sample period.
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Table 4: Unit Root Tests - United Kingdom, Weekly Data

Sales Product SI

not adj. (s.a.) not adj. (s.a.)

Observations 87, 914 87, 914 87, 914 87, 914

Pesaran 2007 CIPS Test: H0 - All panels are non-stationary

p-value, lags 2 0 0 0 0

Z-score, lags 2 −67.05 −66.93 −51.11 −54.76

p-value, lags 4 0 0 0 0

Z-score, lags 4 −43.03 −46.77 −41.40 −45.98

p-value, lags 6 0 0 0 0

Z-score, lags 6 −33.16 −35.99 −31.31 −35.38

p-value, lags 8 0 0 0 0

Z-score, lags 8 −21.45 −22.77 −24.31 −27.46

The table is based on 226 strongly balanced panels.

The tests show that some panels are stationary if we restrict serial correlation to 6 lags. For 8 lags we cannot

reject the null hypothesis of non-stationarity for registrations or the search index in the case of Germany. Sales

and search in the UK data are stationary up to lag 8 in the weekly data we analyze. Appendix F shows that

after aggregation to monthly data there is evidence of non-stationarity for registrations and the search index,

as in the German data. This suggests that aggregation of time series can induce non-stationarity (Rossana and

Seater, 1995).

Next we test the data for evidence of cross-section dependence. Table 5 provides results from Pesaran’s test

for cross section dependence in the sales and the product search index data. The test clearly demonstrates that

this problem affects both types of data, regardless of seasonal adjustment. The table also reveals differences

in the functioning of the market for cars in the two countries: while the seasonally adjusted absolute serial

correlation of sales is quite similar, the level of product search is more correlated in Germany than in the UK.

Table 5: Cross Section Dependence Test

Germany United Kingdom

Variable CD-test p-value ρ |ρ| CD-test p-value ρ |ρ|

Sales 196.27 0.000 0.198 0.292 1050.08 0.000 0.334 0.386

Sales (s.a.) 51.55 0.000 0.052 0.164 307.28 0.000 0.098 0.175

Product S.I. 363.44 0.000 0.363 0.421 576.85 0.000 0.183 0.329

Product S.I. (s.a.) 51.26 0.000 0.052 0.154 99.60 0.000 0.032 0.121

The table is based on 138 balanced panels for Germany and 226 balanced panels for the United Kingdom.
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5 Results

Given the triple challenge of serial correlation, non-stationarity and unobserved common factors, we adopt

the following approach to estimating reliable empirical models: seasonal effects are removed by differencing

against observations made one year before, serial correlation is modeled by including lags of the dependent

variable and effects of common factors are captured by including lagged cross-section averages of all variables.

We rely on Mean Group estimators which include Error Correction Models (ECM) to identify both short- and

long-run effects of search on sales. Alternative estimators are also presented and tested.

This section provides results from estimation of these MG ECM’s as well as FE and OLS models. Results

are presented in two steps: first, we compare results from OLS models and MG estimators based on the

preferred model, derived using the MG estimator. These tables show how each element of our modeling

strategy contributes to removing sources of bias. Next, we test the model specification described in Section

3. We show how inclusion of search indices related to the scrappage subsidy and to fandom alter the effect of

product level search on sales.

5.1 Baseline Regressions

This section sets out regression results obtained with OLS, fixed effects (FE) and mean group (MG) estimators.

Tables 6 and 7 contain five models: two columns with OLS results and three columns with results from FE

or MG estimators. The OLS and MG estimators are presented without and with data transformed to remove

seasonality.

The MG estimator results in column 5 of Tables 6 and 7 represent our preferred specification as serial

correlation and cross-section dependence are minimized.13 We present results from estimating models based

on the specification of Equation (12), which does not include an error correction mechanism. This specification

lends itself to comparisons with results from OLS and FE estimators. Tables 6 and 7 illustrate how misleading

OLS and FE results for such long panels with cross section dependence can be: the product search index

effects in the monthly data from Germany are biased towards zero, while they are too high by a factor of at

least 4 in the weekly data from the UK.

The results presented in the 5 columns of Tables 6 and 7 are based on the same set of regressors, including

cross-section averages of registrations, product, brand and scrappage level searches. As is indicated, the fixed

effects (Date, Manufacturer) control for time-invariant differences across the models presented in these tables.

The tests reported below the tables show that inclusion of cross-section averages does not remove common

correlated effects from the OLS or FE estimators.14 There is also evidence of serial correlation in the residuals

of the OLS and FE estimators, particularly in the weekly UK data. Both problems contribute to the significant

13The same set of regressors is used in the preferred MG models with error correction mechanisms that are presented further
below in Tables 8 and 10.

14In the specifications for the German data we use up to 13 lags (months). Specifications for the UK data are based on up to 28
lags (weeks), i.e. slightly over 6 months. Figure 2 shows the 6 months cycle that exists for cars in the UK as a result of the changes
of letters on the number plates for new cars every 6 months.
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biases of the main coefficients of interest, relative to the MG models in column 5 of these tables.

Table 6: Germany, Monthly Data, N= 16458, 205 Products

OLS Panel Estimators

not adj. (s.a.) MG not adj. FE (s.a.) MG (s.a.)

(1) (2) (3) (4) (5)

Product SI t −1.143 2.380 25.04∗∗∗ 2.489∗ 23.99∗∗∗

(1.287) (1.739) (6.184) (1.227) (5.237)

Product SI t−1 3.935∗ 5.973∗ 14.84∗∗ 6.271∗∗∗ 15.73∗∗

(1.878) (2.500) (5.258) (1.225) (5.792)

Brand SI t−2 11.96∗∗∗ 4.043∗ 9.694∗∗ 4.440∗ 6.985∗

(2.942) (1.913) (3.136) (2.169) (3.441)

Brand SI t−3 −12.62∗∗∗ 0.486 −6.491∗∗ 0.0793 −2.347

(3.490) (2.765) (2.375) (2.006) (2.222)

Scrappage SI t 15.27∗∗∗ 10.79∗∗∗ 72.60 10.94∗∗∗ 15.40∗

(2.624) (2.573) (56.93) (1.306) (7.818)

Registrationst−1 0.643∗∗∗ 0.645∗∗∗ 0.234∗∗∗ 0.638∗∗∗ 0.260∗∗∗

(0.0295) (0.0288) (0.0156) (0.00737) (0.0183)

Registrationst−9 −0.0511∗∗∗ −0.0377∗ 0.0574∗∗∗ −0.0392∗∗∗ 0.0347∗∗

(0.0117) (0.0158) (0.0109) (0.00717) (0.0118)

Registrationst−12 0.365∗∗∗ −0.429∗∗∗ 0.0359∗∗ −0.430∗∗∗ −0.339∗∗∗

(0.00945) (0.00870) (0.0118) (0.00786) (0.0133)

Registrationst−13 −0.217∗∗∗ 0.317∗∗∗ −0.0348∗∗ 0.310∗∗∗ 0.112∗∗∗

(0.0113) (0.0104) (0.0116) (0.00701) (0.0122)

Manufacturer, Date FE DATE DATE MAN. BOTH MAN.

Constant −250.9 −32.09 −489.0∗∗∗ −12.84 −45.48∗

(374.6) (33.44) (135.3) (8.972) (19.71)

CD Test p 0 0 0 0 0.218

CD Test 141.39 48.43 113.45 52.06 1.23

CH Test AR(1) 0.333 0.0389 0.0519 0.734 0.348

CH Test AR(2) 0.178 0.0263 0.835 0.243 0.711

CH Test AR(11) 0.787 0.926 0.930 0.0108 0.873

CH Test AR(12) 0.894 0.665 0.103 0.0121 0.160

Notes: Std. errors are clustered on the manufacturer. ∗∗∗, ∗∗, ∗ denote significance at the 0.1%, 1%, 5% level.

Time period is 2004-2014. Sample contains 205 products with at least 24 months of positive sales. OLS models

contain month, year and make fixed effects. All models also contain lags 1,3,4,6,7,8,11 of Registrations

and Registration cross section averages at lags 1,3,6,11,12,13.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag x

(p-values)15. CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values) and statistic.

Test restricted to 101 highly balanced product panels. CIPS Test: Pesaran (2007) test for H0 of non-stationary

residuals with trend and maximum lags, (p-values) and statistic.

15This test is implemented as actest in Stata. In our setting it is equivalent to the Arellano and Bond (1991) test for autocorre-
lation.
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Table 7: UK, Weekly Data, N= 86558, 226 Products

OLS Panel Estimators

not s.a. s.a. MG not s.a. FE (s.a.) MG (s.a.)

(1) (2) (3) (4) (5)

Product SI t 1.886∗ ∗ ∗ 0.595∗ ∗ ∗ 0.446∗∗ 0.614∗ ∗ ∗ 0.317∗
(0.131) (0.0973) (0.147) (0.0977) (0.131)

Product SI t−4 1.340∗ ∗ ∗ 0.532∗ ∗ ∗ 0.411∗ ∗ ∗ 0.548∗ ∗ ∗ 0.304∗
(0.145) (0.103) (0.123) (0.103) (0.122)

Brand SI t−25 −0.417 −0.707∗ ∗ ∗ −0.00592 −0.736∗ ∗ ∗ −0.262

(0.235) (0.176) (0.230) (0.180) (0.178)

Scrappage SI t−16 0.288∗ ∗ ∗ 0.274∗ ∗ ∗ 0.0528 0.275∗ ∗ ∗ 0.117∗
(0.0721) (0.0528) (0.0683) (0.0531) (0.0548)

Registrationst−1 0.213∗ ∗ ∗ 0.134∗ ∗ ∗ 0.184∗ ∗ ∗ 0.131∗ ∗ ∗ 0.192∗ ∗ ∗
(0.00334) (0.00336) (0.00788) (0.00337) (0.00786)

Registrationst−4 0.128∗ ∗ ∗ 0.141∗ ∗ ∗ 0.102∗ ∗ ∗ 0.139∗ ∗ ∗ 0.123∗ ∗ ∗
(0.00281) (0.00338) (0.00696) (0.00338) (0.00731)

Registrationst−9 0.0479∗ ∗ ∗ 0.117∗ ∗ ∗ 0.0649∗ ∗ ∗ 0.116∗ ∗ ∗ 0.0630∗ ∗ ∗
(0.00287) (0.00340) (0.00635) (0.00341) (0.00617)

Registrationst−26 0.512∗ ∗ ∗ 0.135∗ ∗ ∗ 0.198∗ ∗ ∗ 0.134∗ ∗ ∗ 0.0958∗ ∗ ∗
(0.00276) (0.00335) (0.0106) (0.00335) (0.00758)

Manufacturer, Date FE DATE DATE MAN. BOTH MAN.

Constant −30.82 −2.982 −0.148 −45.46 −2.364

(93.38) (18.87) (13.71) (530.5) (3.642)

CD Test 557.86 783.40 6.82 492.47 2.81

CD Test p 0.00 0.00 0.00 0.00 0.005

CH Test AR(1) 0.016 0.559 0.120 0.652 0.169

CH Test AR(6) 0.000 0.003 0.951 0.001 0.877

CH Test AR(16) 0.925 0.167 0.022 0.297 0.016

CH Test AR(18) 0.000 0.000 0.691 0.000 0.360

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 0.1%, 1%, 5% level. Time period 2004-2011. The sample contains 226

products with at least 3 months of consecutive sales and 52 weeks of positive sales. All models contain lags 1-4,7-9,

11,13-15,20-24,26,27 of registrations, lags 1-4,6-9,12-15,19,20,23,26,27 of registration cross-section averages (CA),

the CA of the change in registrations. Furthermore models contain lags 8,13,17,23 and 27 of the product SI and lags

4,5,9,11,12,17-19,21-17 of product SI CA, lags 20,23,27 of brand SI as well as lags 2,7,8,9,10 of the brand SI CA,

lags 3,8,12,20 of the scrappage SI and lags 1,3-6,10,16-19,21,23-27 of the scrappage SI CA.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag x (p-values).

CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values) and statistic. Test restricted

to 144 highly balanced product panels.

The result of Pesaran’s 2004 CD test reported for column 5 of Table 6 (Germany) shows that any common

correlated effects are captured by the cross section averages included in that specification. The same test

reported for Table 7 (UK) shows that some evidence of common correlated effects remains for that model,
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although this is much weaker than for the OLS and FE models we report for the UK.

Results differ strongly across the five empirical models for Germany and the UK. The pattern of deviations

from the preferred model varies across the two countries. For instance the OLS models suggest that search

does not affect sales in the German data, while the effect is overestimated by a factor of six in the case of the

UK data when compared to the preferred model. In both countries the preferred MG model indicates that there

is a positive and significant effect of contemporaneous search on sales.

5.2 Cointegration and Exogeneity

In this section we analyze our preferred models in detail, introducing the error correction specification and

focusing on the biases discussed in Section 3.1. Tables 8 and 10 provide results from estimation of the ARDL

model with error correction mechanism as set out in Equation (14). Tables 9 and 11 provide tests of these

specifications based on the estimation of the long-run parameters from the specification set out in Equation

(15) as suggested by Chudik et al. (2015).

Tables 8 and 10 show that the biases predicted by the model presented in Section 3 are present in the data

for both countries. Moving from left to right in each table we add the search indices and cross-section averages

for brands (column 2) and for brand level scrappage searches (column 3) to the baseline model that is based

solely on predicting sales with product level search indices (column 1). As expected the coefficients on the

short- and long-run effects of the product level search index are biased downwards, absent a measure of brand

level search and are biased upwards, absent a measure of scrappage related search. The omission of scrappage

related search indices results in much larger biases in both sets of data. The models in columns 1 and 2 are

affected by significant cross-section dependence in the error terms as Pesaran’s 2004 CD test demonstrates.

The models in columns 3 and 4 exhibit no (Germany) or much less/no cross-section dependence (UK). Note

that the specifications reported in columns 3 of Tables 8 and 10 correspond to those reported in columns 5 of

Tables 6 and 7, the only difference being the use of the error correction model in the former tables.

In all columns of Tables 8 and 10 the t-statistics on the lagged dependent variable are below -40 for

Germany and -110 for the UK. These statistics are below the 1% critical values reported by Gengenbach et al.

(2015) for panel models with three explanatory variables, indicating that search and sales are cointegrated both

in the UK and the German data.

In the German data (Table 8) the coefficients on brand level searches are only significant at the 10% level

in column 3. However, the search index for the scrappage subsidy in column 3 is significant at the 5% level.

The inclusion of brand and scrappage search cross-section averages in column 3 and of scrappage search

cross-section averages in column 4 of Table 8 result in specifications for which there is no evidence of cross-

section dependence in the errors. The specifications reported in columns 3 and 4 of the Table 8 are based on 7

cross-section averages (CAs) of the dependent variable, but only four each of the brand and scrappage search

indices.
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Table 8: CCE MG Results for Germany, Monthly Data

(1) (2) (3) (4)

Long Run Coefficient

Product SI t−1 43.08∗ ∗ ∗ 46.51∗ ∗ ∗ 34.54∗ ∗ ∗ 35.16∗ ∗ ∗
(6.448) (7.328) (7.614) (6.300)

Short Run Coefficient

Adjustment rate −0.656∗ ∗ ∗ −0.703∗ ∗ ∗ −0.772∗ ∗ ∗ −0.721∗ ∗ ∗
(Registrationst−1) (0.0157) (0.0164) (0.0188) (0.0169)

4 Product SI t 20.61∗ ∗ ∗ 25.08∗ ∗ ∗ 22.84∗ ∗ ∗ 21.40∗ ∗ ∗
(4.357) (4.902) (5.309) (4.272)

Brand SI t−2 4.154 6.691†
(2.757) (3.800)

Scrappage SI t 16.72∗ 14.94†
(7.849) (7.639)

Registrationst−9 0.0556∗ ∗ ∗ 0.0517∗ ∗ ∗ 0.0413∗ ∗ ∗ 0.0404∗ ∗ ∗
(0.00905) (0.0102) (0.0122) (0.0105)

Registrationst−12 −0.368∗ ∗ ∗ −0.333∗ ∗ ∗ −0.326∗ ∗ ∗ −0.348∗ ∗ ∗
(0.0103) (0.0120) (0.0148) (0.0127)

Registrationst−13 0.131∗ ∗ ∗ 0.105∗ ∗ ∗ 0.0929∗ ∗ ∗ 0.120∗ ∗ ∗
(0.0108) (0.0118) (0.0132) (0.0121)

Constant −27.30 −21.81 −31.98 −22.16

(17.06) (19.65) (25.21) (21.96)

Products 200 200 200 200

Observations 16, 284 16, 284 16, 284 16, 284

CD Test 5.86 4.98 0.77 1.55

CD Test p 0.00 0.00 0.44 0.12

CH Test AR(1) 0.196 0.207 0.0301 0.0673

CH Test AR(2) 0.269 0.103 0.359 0.565

CH Test AR(11) 0.353 0.497 0.632 0.995

CH Test AR(12) 0.00302 0.00315 0.0911 0.0488

Notes: ∗∗∗, ∗∗, ∗, † denote significance at the 0.1%, 1%, 5%, 10% level. Time period is 2004-2014. The sample

contains 200 products with at least 24 months of positive sales. All models contain lags 1-6,8,9,12,13 of registrations,

lags 0,1,3,6,11,12,13 of registration cross-section averages (CA) and the CA of the change in registrations. Models 2

and 3 contain brand SI CAs at lags 2,4,5 and 6. Models 3 and 4 contain lags 0,3,6-9 and 11 of the scrappage SI and

lags 0,9,11,12 of the scrappage SI CAs.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag x (p-values).

CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values) and statistic. Test restricted

to 149 sufficiently balanced product panels.

An additional test of the specifications reported in Table 8 is provided by Table 9 in which we report

tests of the mean long-run estimator (θ̂g,t) in all four models presented in Table 8. θ̂g,t is estimated using the

cross-sectionally augmented distributed lag model proposed by Chudik et al. (2015). This is compared to the
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long-run estimator derived from the estimators reported in Table 8, based on all lags of the dependent variable

included in these models. The smallest absolute average difference between the two methods of estimating

the long-run parameter is obtained for model 4, which also has the lowest variance. We cannot reject that the

coefficients differ on average for the specifications from Columns 2,3 or 4 in Table 8, but we can reject this

for the base specification from Column 1.

Taking the evidence presented in Tables 8 and 9 together we view Model 3 as the most reliable representa-

tion of the German data.

Table 9: Comparing Long Run Effects from CS-DL and ARDL Models for Germany
Model Products θ̂g,t

β̂g,t
1−γ̂t,k

θ̂g,t − β̂g,t
1−γ̂t,k

Std. Err. p t
1 200 105.798 23.477 82.321 26.424 0.002 3.115
2 200 111.142 102.297 8.845 18.328 0.630 0.483
3 200 83.147 92.431 -9.284 36.473 0.799 -0.255
4 200 80.730 73.093 7.637 14.927 0.609 0.512

In the UK data (Table 10) the coefficients on brand level searches are not significant, while the search

index for the scrappage subsidy in Columns 3 and 4 is significant at the 5% level. The inclusion of brand

and scrappage search cross-section averages in Column 2 and of scrappage search cross-section averages in

column 3 of Table 8 result in significant reductions of the level of cross-section dependence. In Column 4

we drop 29 products from the data for which the average product level search index is falling over the sample

period. Many of these products are affected by significant one off reductions in search interest. Dropping these

products does not significantly change any of the coefficients, but does reduce cross-section dependence very

significantly, so that it no longer matters. Overall, we take this as an indication that cross section dependence

doesn’t create significant biases in either column 3 or column 4 of Table 10. The specifications reported in

Table 10 are based on 17 cross-section averages (CAs) of the dependent variable, five brand level CAs and 16

scrappage search CAs.

We test the specifications reported in Table 10 by comparing the implied long-run effect of product level

search with that obtained from an alternative model as suggested by Chudik et al. (2015) in Table 11. The

smallest absolute average difference between the two methods of estimating the long-run parameter is obtained

for model 4, but model 3 has the lowest variance of the estimates. The estimated long-run coefficients for

product search are very close similar for both of these specifications, providing further evidence of their

consistency.

In all models higher levels of product level search predict higher sales of the average product. In the short

run a one standard deviation increase in the monthly product level search index (s.a.) predicts a 16.5% increase

of car sales relative to average monthly sales in Germany. In the UK the corresponding effect is an increase

of weekly sales by 4% of average weekly sales. In the UK data a permanently higher level of search has an

effect almost twice as high as the short run effect on sales, whereas in Germany the long-run increase in sales

is only 1.5 times higher than the short-run effect. Direct comparisons between both countries on the basis of
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these results should be treated with caution due to the differing frequencies of the time series we rely on.16

Table 10: CCE MG ECM Results for the UK, Weekly Data

(1) (2) (3) (4)

Error Correction Term

Product SI t−4 0.673∗ ∗ ∗ 0.681∗ ∗ ∗ 0.621∗ ∗ ∗ 0.632∗ ∗ ∗
(0.179) (0.185) (0.176) (0.191)

SR

Adjustment rate −0.862∗ ∗ ∗ −0.867∗ ∗ ∗ −0.877∗ ∗ ∗ −0.875∗ ∗ ∗
(Registrationst−4) (0.00702) (0.00701) (0.00731) (0.00786)

4̃ Product SI t−4 0.342∗∗ 0.346∗∗ 0.317∗ 0.292∗
(0.125) (0.132) (0.131) (0.138)

Brand SI t−25 −0.311 −0.262 −0.272

(0.188) (0.178) (0.168)

Scrappage SI t−16 0.117∗ 0.108∗
(0.0548) (0.0545)

Registrationst−1 0.227∗ ∗ ∗ 0.215∗ ∗ ∗ 0.192∗ ∗ ∗ 0.190∗ ∗ ∗
(0.00791) (0.00788) (0.00786) (0.00852)

Registrationst−9 0.0672∗ ∗ ∗ 0.0655∗ ∗ ∗ 0.0630∗ ∗ ∗ 0.0644∗ ∗ ∗
(0.00606) (0.00609) (0.00617) (0.00671)

Registrationst−26 0.0925∗ ∗ ∗ 0.0939∗ ∗ ∗ 0.0958∗ ∗ ∗ 0.0906∗ ∗ ∗
(0.00729) (0.00744) (0.00758) (0.00813)

Constant −0.594 −2.155 −2.364 −1.813

(1.795) (2.021) (3.642) (3.708)

Products 226 226 226 197

Observations 86, 558 86, 558 86, 558 75, 451

CD Test 8.13 7.12 4.95 1.92

CD Test p 0.00 0.00 0.00 0.055

CH Test AR(1) 0.570 0.380 0.169 0.263

CH Test AR(6) 0.043 0.644 0.877 0.739

CH Test AR(16) 0.178 0.056 0.016 0.025

CH Test AR(18) 0.007 0.066 0.360 0.361

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 0.1%, 1%, 5% level. Time period 2004-2011. The sample contains

226 products with at least 3 months of consecutive sales and 52 weeks of positive sales. All models contain

lags 1-4,7,8,9,11,13-15,20-24,26,27 of registrations, lags 1-4,6-9,12-15,19,20,23,26,27 of registration

cross-section averages (CA) and the CA of the change in registrations. Models 2,3 and 4 contain brand SI

CAs at lags 2,7,8,9 and 10. Models 3 and 4 contain lags 3,8,12,16 and 20 of the scrappage SI and lags

1,3-6,10,16-19,21,23-27 of the scrappage SI CAs.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag

x (p-values). CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values)

and statistic. Test restricted to 144 highly balanced product panels.

16Rossana and Seater (1995) show that aggregation of a time-series to a lower frequency often removes evidence of low frequency
cycles and can alter the properties of the time series significantly.
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Table 11: Comparing Long Run Effects from CS-DL and ARDL Models for UK
Model Products θ̂g,t

β̂g,t
1−γ̂t,k

θ̂g,t − β̂g,t
1−γ̂t,k

Std. Err. p t
1 226 2.77 4.24 -1.46 1.17 0.21 -1.26
2 226 3.41 -90.85 94.26 94.74 0.32 0.99
3 226 2.77 2.28 0.49 0.70 0.48 0.70
4 197 2.58 2.29 0.29 0.80 0.72 0.36

Appendix G provides tables for both countries with specifications that contain additional cross section

average terms such as the average change in the product, brand and scrappage search indices. In the German

data these models can perform marginally better against the cross section dependence test, than our preferred

model, but at the cost of losing observations. In the UK data two models perform marginally better against

the cross-section dependence test than the model in column 3 of Table 10, but these models are affected by

significant serial correlation. In both sets of data the long-run parameters obtained from these richer models

differ more in absolute value from the long-run parameters we estimate with the alternative estimation method

proposed by Chudik et al. (2015) than our preferred specifications. This illustrates the robustness of the results

we present here.

Appendix H provides tables with specifications in which we use data that are not seasonally adjusted. The

results show that significant evidence of cross-section dependence and serial correlation in the errors remains.

This indicates that adjusting the data for seasonality is an important step in our analysis of the data.

Overall we find that the empirical models behave in a similar fashion for both countries, in spite of dif-

ferent levels of aggregation. In the following section we present product level results that demonstrate how

heterogeneous the effect of search on sales is across products in both markets.

5.3 Product Level Results

The mean group estimator differs from a fixed effects estimator mainly because its coefficients are the average

of the product level coefficients that are estimated independently in a first step. Both estimators remove fixed

effects that are constant in time from the data. One advantage of the mean group estimator is that we can study

not just the average effect of a variable in the sample, but also the effect for specific units of observation, here

products. We exploit this possibility to compare the coefficients for the product-level search indices in the

short-run and the long-run for the top ten most frequently sold car models in the two countries.

Tables 12 and 13 show the estimated coefficients corresponding to columns 1 and 3 of tables 8 and 10.

We have argued that the coefficients from column 1 of these tables are biased. Tables 12 and 13 reveal that

the biases we identified play out very differently across different products in both markets. Two observations

stand out from the tables below: there is very significant variation in the short-run and long-run parameters in

both markets. The largest values we observe are 5 or 6 times larger than the average coefficients reported in

Table 8 and between 36 and 30 times larger than the average coefficients reported in Table 10. Secondly, there
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are negative values. Some of the negative coefficients are not likely to be significantly different from zero, but

others clearly are.

We focus on the case of the difference between the A-Class and the B-Class cars produced by Mercedes

Benz and sold in significant volume in Germany as Table 12 reveals. Figure 4 shows both the product level

search index and the level of sales for both car models in the German data relative to the mean for each series

(we have shifted the two series for the A-Class by adding 2 to each observation to make the figure easier to

read).

Table 12: Product Level Search Index Coefficients - Germany

Coefficients

Column 1 Column 3

Product Manufacturer Av. Sales s.r. l.r. s.r. l.r.

GOLF VW 20855.92 12.54 81.09 77.04 75.02

C CLASS MERCEDES 18911.55 95.64 67.37 37.43 126.33

A CLASS MERCEDES 14215.11 −201.65 −64.45 −236.38 −105.09

B CLASS MERCEDES 11301.34 230.61 509.71 154.16 173.89

PASSAT VW 7623.24 −10.79 −15.52 −24.52 −8.02

ASTRA OPEL (GM) 7151.69 43.44 111.17 49.71 90.77

3 BMW 6888.24 47.36 −.70 −4.31 −37.90

POLO VW 6819.28 91.09 121.40 108.60 31.75

CORSA OPEL (GM) 5546.82 −39.91 80.58 39.64 7.97

TOURAN VW 5282.95 172.35 143.02 156.68 203.19

Table 13: Product Level Search Index Coefficients - UK

Coefficients

Column 1 Column 3

Product Manufacturer Av. Sales s.r. l.r. s.r. l.r.

FIESTA FORD 1618.79 9.27 18.22 12.45 19.69

FOCUS FORD 1604.20 4.92 6.49 4.13 5.47

ASTRA VAUXHALL (GM) 1356.52 −1.90 −.11 −1.67 −.87

CORSA VAUXHALL (GM) 1269.79 1.42 5.61 3.41 9.76

GOLF VW 1008.23 −2.84 .89 −2.01 2.29

TRANSIT FORD 901.42 −.40 2.65 .29 2.98

POLO VW 580.31 −.12 .59 −.15 .73

207 PEUGEOT 557.81 8.83 18.80 7.76 16.41

CLIO RENAULT 518.75 1.32 1.62 2.21 2.07

MONDEO FORD 518.16 .41 −.45 1.38 1.92

The figure reveals that sales of both the A- and B-Class have been fairly stable for most of the sample

period with the minimum sales for the B-class coinciding with a switch from the first to the second generation
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at the end of 2011, while the same happened in case of the A-Class with a switch to the third generation in

2012. The third generation A-Class is a very different-looking vehicle from its two predecessors, in an attempt

by Mercedes to appeal to a younger cohort of customers. As the data illustrate, this led to a much larger level

of search, but not to a corresponding increase in sales.
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The negative coefficients for short- and long-run search reveal that the A-Class has fared less well than

Mercedes might have been hoped for in light of the large amount of interest the new car had generated. The

promotion strategy for the B-Class, in contrast, was much more successful in converting searches into sales.

6 Conclusion

Search engine data offer an invaluable opportunity to analyze information resulting from online search activity

of hundreds of millions of individuals around the world. Therefore, it is not surprising that there has been

rapidly growing interest in the use of such data across the entire range of the social sciences and beyond.

In this growing literature little attention has been paid to modeling the distinct motivations for search. It is

often overlooked that online searches that look identical in the available data result from different motivations

that lead to different post-search behavior. This creates challenges if the objective is to link search data to

economic outcomes. Researchers have also often ignored the econometric challenges that arise from the use

of large T , large N panel data. This paper shows that biases can result in both cases, with the larger biases

arising from failure to address common correlated effects and serial correlation in our datasets.

Focusing on pre-purchase searches we model biases that arise if fandom and post-purchase searches are

not controlled for, predict their effects and confirm that the biases arise in our data. Fortunately, the rich data

that can be obtained from GT offer solutions to this problem: additional search terms can be found that help to
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condition out forms of search that are not of immediate interest. Nevertheless, much work remains to be done

here to help determine how aggregate search can be decomposed into its main components.

The increased length of the available time series promises to offer more opportunities to exploit quasi-

random shocks to identify interesting effects across a wide range of economic activity. Nevertheless, using

online search data means that the afore-mentioned data properties have to be addressed: serial correlation

and non-stationarity. The combination of long high-frequency time series in large panels also introduces the

potential that common correlated effects will bias standard panel estimators. As we show in this paper, mean

group estimators can be used to remove biases arising from unobserved common effects. As an added benefit

these estimators reveal not just the population average, but also the product level coefficients derived from the

time series data. This means that individual level heterogeneity can be studied in much greater detail than in

other panel data applications.

A last point to emerge from our analysis is that the frequency of the data available has implications for

the challenges that the data might hide, e.g. non-stationarity, and also affects the questions that a researcher

can ask. The frequency of the data is often determined by the frequency of the data that are matched to

the aggregate search data. We use datasets that have weekly and monthly frequencies and find that short-

run shocks disappear more quickly from the weekly data than from the monthly data. In our view this is

not a reflection of fundamental differences in the markets being analyzed, but a reflection that data averaged

over a longer period of time reverts to equilibrium more slowly. Depending on the object of study high

frequency search data may, therefore, create an impetus to increase the frequency with which data on ‘real

world’ outcomes is made available.

We expect that online search data will find many more applications in the future. The richness of this

type of data is only beginning to be explored. We expect that methods for panel data analysis will continue

to evolve as the potential for applications of aggregate search data combined with data on outcomes is more

widely appreciated.
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MORAGA-GONZÁLEZ, J. L., Z. SÁNDOR, AND M. R. WILDENBEEST (2015): “Consumer Search and Prices

in the Automobile Market,” CEPR DP 10487.

NUTI, S. V., B. WAYDA, I. RANASINGHE, S. WANG, R. P. DREYER, S. I. CHEN, AND K. MURUGIAH

(2014): “The Use of Google Trends in Health Care Research: A Systematic Review,” PLoS ONE, 9,

e109583.

ORMEROD, P., R. NYMAN, AND R. A. BENTLEY (2014): “Nowcasting Economic and Social Data:

When and Why Search Engine Data Fails, an Illustration Using Google Flu Trends,” arXiv preprint

arXiv:1408.0699.

PAVLICEK, J. AND L. KRISTOUFEK (2014): “Can Google Searches Help Nowcast and Forecast Unemploy-

ment Rates in the Visegrad Group Countries?” arXiv preprint arXiv:1408.6639.

PESARAN, M. H. (2004): “General Diagnostic Tests for Cross Section Dependence in Panels,” CESifo Work-

ing Paper Series 1229, CESifo Group Munich.

——— (2006): “Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure,”

Econometrica, 74, 967–1012.

——— (2007): “A Simple Panel Unit Root Test in the Presence of Cross-section Dependence,” Journal of

Applied Econometrics, 22, 265–312.

31



PESARAN, M. H. AND E. TOSETTI (2011): “Large Panels with Common Factors and Spatial Correlation,”

Journal of Econometrics, 161, 182–202.

POLGREEN, P. M., Y. CHEN, D. M. PENNOCK, F. D. NELSON, AND R. A. WEINSTEIN (2008): “Using

Internet Searches for Influenza Surveillance,” Clinical Infectious Diseases, 47, 1443–1448.

PREIS, T., H. S. MOAT, AND H. E. STANLEY (2013): “Quantifying Trading Behavior in Financial Markets

Using Google Trends,” Scientific Reports, 3.

SOVINSKY GOEREE, M. (2008): “Limited Information and Advertising in the US Personal Computer Indus-

try,” Econometrica, 76, 1017–1074.

STATISTISCHES BUNDESAMT (2015): “Private Haushalte in der Informationsgesellschaft - Nutzung von

Informations- und Kommunikationstechnologien,” .

PURCELL, K., J. BRENNER, AND L. RAINIE (2012): “Search Engine use 2012,” .

ROSSANA, R. J. AND J. J. SEATER (1995): “Temporal Aggregation and Economic Time Series,” Journal of

Business & Economic Statistics, 13, 441–451.

SANTILLANA, M., D. W. ZHANG, B. M. ALTHOUSE, AND J. W. AYERS (2014): “What Can Digital Disease

Detection Learn from (an External Revision to) Google Flu Trends?” American Journal of Preventive

Medicine, 47, 341–347.

VARIAN, H. R. (2014): “Big data: New Tricks for Econometrics,” The Journal of Economic Perspectives, 28,

3–27.

VOSEN, S. AND T. SCHMIDT (2011): “Forecasting Private Consumption: Survey-based Indicators vs. Google

Trends,” Journal of Forecasting, 30, 565–578.

WOOLDRIDGE, J. (2012): Introductory Econometrics: A Modern Approach, Cengage Learning.

32



A GT keyword selection

One of the main challenges in the literature relying on GT data is to find the right keywords on which to base

the analysis. The approach generally followed consists in finding a reliable benchmark and then determining

the combination of keywords which best approximates the benchmark.

An important issue in key word selection concerns language confusion, i.e. the fact that brands or products

may correspond to common names. This issue is often country-specific as brand or product names are gen-

erally not translated from one language to another and may therefore correspond to a common name in one

country but not in others.

There are several possible ways to address language confusion systematically. One possible strategy to

overcome the language confusion issue is to use combinations of words, linking related products. Another

possible strategy is to use the categories of searches in GT, restricted to the appropriate category of searches.

This means building a rough concordance between categories of products and Google categories. One limita-

tion of the latter approach is a lack of information on how Google constructs its search categories.

Finally, some features regarding strings in GT need to be considered to construct keywords, in particular

the treatment of special characters:

• Accents, special characters, numbers and punctuation signs: these are taken into account by Google

Trends (“Société” gives different results from “Societe”, “apple.” gives different results than “apple”) –

as a result they need to be properly encoded when retrieving the series;

• Case: Google Trends is case-insensitive (“apple” gives the same results as “APPLE”);

• Logical operators: some signs cannot be searched for as such due to their use as logical operators in

Google Trends (for example “,”; “+”). The hyphen (“-”) is considered as a regular character by Google,

except if preceded by a space, then it corresponds to the logical operator “excluding”;

• Apostrophe (’): this sign is currently automatically deleted by Google Trends. This is an issue for

certain brand names containing an apostrophe (e.g. L’OREAL), as it is currently not possible to catch

the search volume for the name containing the apostrophe; it is only possible to get results for OREAL

or LOREAL;

B GT data extraction

Data from Google Trends can be downloaded in three ways: through the dedicated user interface, an appli-

cation programming interface (API), or using a site crawler. The dedicated user interface requires manually

entering each query of interest, which makes it unsuitable for systematic analysis of a large number of terms.

As for crawlers, Google limits the ability of such tools to obtain data from its Google Search service. An

API therefore appears the most appropriate approach for data collection. No API is made available by Google
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on Google trends. In the absence of an official Google API, a number of unauthorized packages/scripts exist

that exploit this facility to automatically download data from Google Trends. We used a similar approach to

that of the googletrend package which requires a browser that downloads the data to a local directory. Our

own script is available on GitHub (https://github.com/jirzii/R4GT). The script uses the R statistics package’s

browseURL command.

We downloaded our GT data between September and November of 2014 for Germany and the United

Kingdom. We downloaded weekly and where necessary monthly series between 2004 and 2014 for 53 (DE)

and 373 (UK) manufacturer and model names. We chose the longest possible series that we were able to match

with our market level data and we used manufacturer and model names as the search terms.

We downloaded data on each search query individually to obtain maximal detail on the variance of the

series. We also downloaded each series together with searches for a very popular and a middle of the range

manufacturer and model. These additional searches provide data about relative search intensities for each class

of information.

Two main complications arose in creating functioning scripts:

1. Identifying the correct syntax to specify complex queries that involve logical and and logical or opera-

tions;

2. Dealing with data that was only available at a monthly frequency (see Section C below).

The syntax to create correct queries for downloads from GT can most easily detected if complex manual

downloads are initially undertaken with the Google Chrome browser. The syntax for the query appears in the

browser’s window once the query has been entered on the webpage for GT via the GT interface.

C GT weekly to monthly data conversion

Depending on the search volumes, GT series are provided either at the monthly or weekly level. In order to

compare the different search terms, it is necessary to aggregate data to a common frequency level, which is

not straightforward due to the normalisation applied to the series.

Google Trends series correspond to the raw number of searches done for one term normalised by the total

number of search queries in the geographical region of interest, rescaled to an index taking a maximum value

of 100 over the period, which may be summarised with the following formula:

Gt =
(xt/Xt)

max (xt/Xt)
× 100 (16)

where Gt is the Google Trends figure in time t, xt is the number of searches for the keyword x in time t

and Xt is the total number of Google searches in time t. Depending on the series, t corresponds to a week or

a month. Considering a month m with four weeks (w1, w2, w3, w4) the monthly indicator may be written as

follows:
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Gm =
(xm/Xm)

max (xm/Xm)
× 100 =

((xw1 + xw2 + xw3 + xw4)/(Xw1 +Xw2 +Xw3 +Xw4))

max (xm/Xm)
× 100 (17)

where max (xm/Xm) corresponds to the monthly maximum of the ratio over the entire period. The average

of the weekly indicators, on the other hand, is:

Gw =
(xw1/Xw1 + xw2/Xw2 + xw3/Xw3 + xw4/Xw4)

4×max (xw/Xw)
× 100 (18)

where max (xw/Xw) corresponds to the weekly maximum of the ratio over the whole period. This is

equivalent to the monthly indicator Gm if the two following conditions are verified:

• either the overall number of Google searches Xw or the proportion of searches corresponding to the

keyword xw/Xw is stable over all weeks in each month;

• the weekly and monthly maximum proportions of searches corresponding to the keyword over the whole

period are equivalent: max (xm/Xm) ∼ max (xw/Xw).

The second condition is more likely not to be satisfied, especially for series with a high variation. In that

case the series of converted weekly dataGw are proportional to the series of monthly dataGm, only with lower

variation:

Gw = Gm × (xm/Xm)
max(xw/Xw)

.

In practice, in order to convert the weekly to monthly series, we consider the weekly dataset, expand each

observation by seven, increment the date by one for each line and then average out the data at the monthly

level.

D Data from Kraftfahrtbundesamt

In Germany car license plates are issued by municipalities. Information about registered vehicles is collected

on a central register (ZFZR) maintained by the KBA. Based on these data the KBA provides a number of

statistical tables about the number of new registrations each month (FZ10) by manufacturer and model.

KBA also provide annual data on the number of deregistered cars (FZ7) by manufacturer, resale (FZ18) by

manufacturer and total stock of vehicles (FZ17) by manufacturer.

We downloaded these data from the internet in September 2014 and cleaned and collated the data. Reg-

istration data were added to a panel with monthly frequency at the manufacturer and model level covering

the period between January 2004 and January 2014. Data on total stock of registered vehicles, resale and

deregistration was added to a panel with annual frequency at the manufacturer level.

KBA’s website for vehicle statistics is available here (we accessed the website in September 2014):

http://tinyurl.com/k8lxms7
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E Descriptives

Table A-1: Summary Statistics - Germany, 486 Products, 127 Months

Variable Mean Std. Dev. Min. Max. N

Registrations 1164.168 2668.832 1 44280 33951

Registrations (s.a.) -56.361 1063.042 -22294 20059 28026

Product SI 6.385 12.059 0 100 33951

Product SI (s.a.) 0.406 7.961 -100 100 28026

Brand SI 32.063 24.333 0 95.75 33951

Brand SI (s.a.) 0.122 4.688 -70.387 38.345 28026

Scrappage SI 0.469 3.888 0 86.129 33951

Scrappage SI (s.a.) 0.014 5.87 -86.129 86.129 28026

Correlation Matrix - Germany (N = 20169)

Registrationst Product SIt−1 Brand SIt−2 Scrappage SIt

Registrationst 1

Product SIt−1 0.0772*** 1

Brand SIt−2 0.154*** 0.0819*** 1

Scrappage SIt 0.155*** 0.0631*** 0.487*** 1

* p < 0.05, ** p < 0.01, *** p < 0.001

Table A-2: Summary statistics - United Kingdom, 363 Products, 463 Weeks

Variable Mean Std. Dev. Min. Max. N

Registrations 57.479 239.547 0 9291 266688

Registrations, (s.a.) -10.484 214.892 -8774 7836 236160

Product SI 8.305 14.195 0 100 174551

Product SI, (s.a.) 0.560 6.019 -100 85 154570

Brand SI 38.002 22.067 0 100 266688

Brand SI, (s.a.) -1.168 4.867 -53 80 236160

Scrappage SI 1.592 10.255 0 100 266688

Scrappage SI, (s.a.) 0 15.597 -100 100 236160
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Correlation Matrix - United Kingdom (N = 92886)

Registrationst Product SIt−4 Brand SIt−4 Scrappage SIt−3

Registrationst 1

Product SIt−4 0.0768*** 1

Brand SIt−4 0.0335*** 0.0809*** 1

Scrappage SIt−3 0.0225*** 0.0544*** 0.0457*** 1

* p < 0.05, ** p < 0.01, *** p < 0.001

F Monthly UK Data

Table A-3: Unit Root Tests - United Kingdom, Monthly Data

Sales Product SI

not adj. (s.a.) not adj. (s.a.)

Observations 19516 19516 19516 19516

Pesaran 2007 CIPS Test: H0 - All panels are non-stationary

p-value, lags 2 5.46e− 25 2.64e− 55 7.53e− 38 1.87e− 59

Z-score, lags 2 −10.26 −15.62 −12.81 −16.22

p-value, lags 4 0.000000196 4.53e− 16 0.00709 1.14e− 12

Z-score, lags 4 −5.072 −8.039 −2.453 −7.017

p-value, lags 6 3.95e− 09 6.98e− 20 0.175 0.000379

Z-score, lags 6 −5.771 −9.053 −0.934 −3.367

p-value, lags 8 0.335 2.64e− 11 1.000 0.00457

Z-score, lags 8 −0.426 −6.563 3.926 −2.607

The table is based on 226 strongly balanced panels and 389 weeks.
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G Robustness Checks

Table A-4: CCE MG Results for Germany, Monthly Data

(1) (2) (3) (4) (5)

Long Run Coefficient

Product SI t−1 34.54∗ ∗ ∗ 38.02∗ ∗ ∗ 36.83∗ ∗ ∗ 32.20∗ ∗ ∗ 32.36∗ ∗ ∗
(7.614) (8.147) (9.859) (7.571) (7.347)

Short Run Coefficient

Adjustment rate −0.772∗ ∗ ∗ −0.771∗ ∗ ∗ −0.754∗ ∗ ∗ −0.773∗ ∗ ∗ −0.771∗ ∗ ∗
(Registrationst−1) (0.0188) (0.0193) (0.0188) (0.0193) (0.0190)

4 Product SI t 22.84∗ ∗ ∗ 24.88∗ ∗ ∗ 24.57∗ ∗ ∗ 21.76∗ ∗ ∗ 20.62∗ ∗ ∗
(5.309) (5.363) (6.443) (5.546) (5.808)

Brand SI t−2 6.691 6.386 6.350 7.854∗ 6.326

(3.800) (3.912) (4.650) (3.608) (3.808)

Scrappage SI t 16.72∗ 16.65∗ −24.17 15.95∗ 18.29∗
(7.849) (8.391) (31.26) (7.932) (8.625)

Registrationst−9 0.0413∗ ∗ ∗ 0.0474∗ ∗ ∗ 0.0379∗∗ 0.0393∗∗ 0.0282∗
(0.0122) (0.0126) (0.0139) (0.0121) (0.0118)

Registrationst−12 −0.326∗ ∗ ∗ −0.320∗ ∗ ∗ −0.296∗ ∗ ∗ −0.313∗ ∗ ∗ −0.325∗ ∗ ∗
(0.0148) (0.0143) (0.0156) (0.0145) (0.0142)

Registrationst−13 0.0929∗ ∗ ∗ 0.0886∗ ∗ ∗ 0.0954∗ ∗ ∗ 0.0940∗ ∗ ∗ 0.0948∗ ∗ ∗
(0.0132) (0.0146) (0.0148) (0.0136) (0.0138)

Further variables 4 Prd. SI CA 4 Prd./Br./Scr. SI Lag 8 Lags 8, 13

CA,4 Br./Scr. SI Scr. SI CA Prd. SI CA

Constant −31.98 −39.18 −31.73 −5.554 −2.193

(25.21) (26.80) (31.81) (20.94) (23.15)

Products 200 198 189 198 195

Observations 16284 16204 15822 16204 16081

CD Test 0.77 0.77 1.84 0.10 0.42

CD Test p 0.44 0.44 0.065 0.919 0.672

CH Test AR(1) 0.0301 0.0317 0.0457 0.0267 0.0455

CH Test AR(2) 0.359 0.406 0.116 0.329 0.272

CH Test AR(11) 0.632 0.611 0.631 0.611 0.512

CH Test AR(12) 0.0911 0.0880 0.694 0.179 0.143

Notes: ∗∗∗, ∗∗, ∗, † denote significance at the 0.1%, 1%, 5%, 10% level. Time period is 2004-2014. The sample

contains 200 products with at least 24 months of positive sales. All models contain lags 1-6,8,9,12,13 of registrations,

lags 0,1,3,6,11,12,13 of registration cross-section averages (CA) and the CA of the change in registrations, brand SI

CAs at lags 2,4,5 and 6 and lags 0,3,6-9 and 11 of the scrappage SI and lags 0,9,11,12 of the scrappage SI CAs.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag x (p-values).

CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values) and statistic. Test restricted

to 149 sufficiently balanced product panels.
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Table A-5: CCE MG ECM Results for the UK, Weekly Data

(1) (2) (3) (4) (5)

Error Correction Term

Product SI t−4 0.621∗ ∗ ∗ 0.604∗ ∗ ∗ 0.564∗∗ 0.746∗ ∗ ∗ 0.748∗ ∗ ∗
(0.176) (0.178) (0.184) (0.200) (0.200)

SR

Adjustment rate −0.877∗ ∗ ∗ −0.877∗ ∗ ∗ −0.871∗ ∗ ∗ −0.865∗ ∗ ∗ −0.864∗ ∗ ∗
(Registrationst−4) (0.007) (0.007) (0.007) (0.008) (0.008)

4̃ Product SI t−4 0.317∗∗ 0.306∗ 0.228 0.382∗∗ 0.371∗
(0.131) (0.137) (0.144) (0.147) (0.148)

Brand SI t−25 −0.262 −0.249 −0.259 −0.291 −0.315

(0.178) (0.176) (0.174) (0.192) (0.194)

Scrappage SI t−16 0.117∗ 0.125∗ 0.117∗ 0.142∗ 0.141∗
(0.0548) (0.0561) (0.0589) (0.0640) (0.0638)

Registrationst−1 0.192∗ ∗ ∗ 0.189∗ ∗ ∗ 0.182∗ ∗ ∗
(0.008) (0.008) (0.008)

Registrationst−9 0.0630∗ ∗ ∗ 0.0628∗ ∗ ∗ 0.0622∗ ∗ ∗ 0.0776∗ ∗ ∗ 0.0769∗ ∗ ∗
(0.006) (0.006) (0.006) (0.006) (0.006)

Registrationst−26 0.0925∗ ∗ ∗ 0.0958∗ ∗ ∗ 0.0966∗ ∗ ∗ 0.0979∗ ∗ ∗ 0.0976∗ ∗ ∗
(0.007) (0.008) (0.008) (0.008) (0.008)

Further variables 4 Prd. SI CA 4 Prd./Br./Scr. SI Dropped Reg.

CA,4 Br./Scr. SI t−11

Constant −2.364 −2.174 −2.742 −2.347 −2.269

(3.642) (3.573) (3.600) (4.089) (4.046)

Products 226 226 226 226 226

Observations 86, 558 86, 558 86, 558 86, 558 86, 558

CD Test 4.95 5.05 5.10 4.33 4.27

CD Test p 0.00 0.00 0.00 0.00 0.00

CH Test AR(1) 0.169 0.138 0.102 0.000 0.000

CH Test AR(6) 0.877 0.775 0.757 0.590 0.721

CH Test AR(16) 0.016 0.008 0.003 0.000 0.001

CH Test AR(18) 0.360 0.497 0.482 0.554 0.549

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 0.1%, 1%, 5% level. Time period 2004-2011. The sample contains

226 products with at least 3 months of consecutive sales and 52 weeks of positive sales. All models contain

lags 1-4,7,8,9,11,13-15,20-24,26,27 of registrations, lags 1-4,6-9,12-15,19,20,23,26,27 of registration

cross-section averages (CA) and the CA of the change in registrations. Models 2,3 and 4 contain brand SI

CAs at lags 2,7,8,9 and 10. Models 3 and 4 contain lags 3,8,12,16 and 20 of the scrappage SI and lags

1,3-6,10,16-19,21,23-27 of the scrappage SI CAs.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag x (p-values).

CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values) and statistic. Test restricted

to 144 highly balanced product panels.
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Table A-6: Comparing Long Run Effects from CS-DL and ARDL Models - Germany
Model Products θ̂g,t

β̂g,t
1−γ̂t,k

θ̂g,t − β̂g,t
1−γ̂t,k

Std. Err. p t
1 200 83.15 92.43 -9.28 36.47 0.80 -0.255
2 198 82.14 13.64 68.50 75.82 0.37 0.90
3 189 81.03 86.48 -5.45 41.38 0.90 -0.13
4 198 81.67 42.76 38.91 25.09 0.12 1.55
5 195 89.41 62.82 26.59 25.82 0.30 1.03

Table A-7: Comparing Long Run Effects from CS-DL and ARDL Models - UK
Model Products θ̂g,t

β̂g,t
1−γ̂t,k

θ̂g,t − β̂g,t
1−γ̂t,k

Std. Err. p t
1 226 2.77 2.28 0.49 0.70 0.48 0.70
2 226 2.75 2.15 0.60 0.70 0.39 0.86
3 226 2.78 2.01 0.76 0.70 0.27 1.10
4 226 2.77 -2.52 5.29 2.57 0.04 2.06
5 226 2.77 0.32 2.45 1.14 0.03 2.14

H Results Without Seasonal Adjustment

In this section we present results of estimating MG models with data that is not seasonally adjusted in Tables

A-10 and A-11. We also present comparisons of the long-run coefficients for the effect of online search on

sales for each model using the methodology proposed by Chudik et al. (2015). The first column in Tables

A-10 and A-11 provides results from estimating the preferred model presented in Section 5.2. The remaining

columns present models that are adapted to minimize Pesaran (2004)’s CD test statistic. These models were

arrived at by testing additions and exclusions of individual cross-section average terms to the model in column

1, one at a time.

Table A-8: Comparing Long Run Effects from CS-DL and ARDL Models - Germany
Model Products θ̂g,t

β̂g,t
1−γ̂t,k

θ̂g,t − β̂g,t
1−γ̂t,k

Std. Err. p t
1 189 69.94 39.34 30.60 28.03 0.28 1.09
2 189 83.90 18.13 65.77 68.22 0.34 0.96
3 189 83.90 38.51 45.39 80.92 0.58 0.56
4 181 81.72 50.58 31.14 39.44 0.43 0.79

Table A-9: Comparing Long Run Effects from CS-DL and ARDL Models - UK
Model Products θ̂g,t

β̂g,t
1−γ̂t,k

θ̂g,t − β̂g,t
1−γ̂t,k

Std. Err. p t
1 226 0.17 6.94 -6.77 3.52 0.06 -1.92
2 226 0.35 -1.56 1.91 2.01 0.34 0.95
3 226 0.28 -0.74 1.02 1.50 0.50 0.68
4 226 0.22 0.11 0.12 1.15 0.92 0.10
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Table A-10: CCE MG Results for Germany, Monthly Data

(1) (2) (3) (4)

Long Run Coefficient

Product SI t−1 30.17∗ ∗ ∗ 25.12∗ ∗ ∗ 23.94∗ ∗ ∗ 25.90∗ ∗ ∗
(9.031) (7.255) (6.943) (6.518)

Short Run Coefficient

Adjustment rate −0.780∗ ∗ ∗ −0.874∗ ∗ ∗ −0.863∗ ∗ ∗ −0.837∗ ∗ ∗
(Registrationst−1) (0.0160) (0.0186) (0.0188) (0.0188)

4 Product SI t 20.34∗∗ 23.56∗ ∗ ∗ 26.12∗ ∗ ∗ 23.77∗∗
(7.728) (7.017) (7.139) (8.966)

Brand SI t−2 8.743∗ 8.877∗∗ 9.385∗∗ 8.548∗∗
(3.463) (3.223) (3.383) (3.130)

Scrappage SI t 74.46 17.35 18.14 −13298.9

(41.60) (15.35) (15.57) (13181.9)

Registrationst−9 0.0508∗ ∗ ∗ 0.0515∗ ∗ ∗ 0.0450∗ ∗ ∗ 0.0363∗∗
(0.0109) (0.0128) (0.0126) (0.0125)

Registrationst−12 0.0337∗∗ 0.0371∗∗ 0.0323∗ 0.0350∗
(0.0125) (0.0139) (0.0154) (0.0143)

Registrationst−13 −0.0421∗ ∗ ∗ −0.0315∗ −0.0255 −0.0358∗
(0.0127) (0.0129) (0.0134) (0.0155)

Constant −722.4∗ −697.7∗ −690.5∗ −434.8

(292.4) (279.9) (268.6) (260.9)

Products 189 189 189 181

Observations 15, 822 15, 822 15, 822 15, 457

CD Test 7.04 3.76 3.15 3.89

CD Test p 0.00 0.00 0.00 0.00

CH Test AR(1) 0.0529 0.183 0.234 0.184

CH Test AR(2) 0.885 0.114 0.118 0.169

CH Test AR(11) 0.643 0.0981 0.0807 0.0726

CH Test AR(12) 0.216 0.0423 0.0151 0.0266

Notes: ∗∗∗, ∗∗, ∗, † denote significance at the 0.1%, 1%, 5%, 10% level. Time period is 2004-2014. The sample

contains 200 products with at least 24 months of positive sales. All models contain lags 1-6,8,9,12,13 of registrations,

lags 0,1,3,6,11,12,13 of registration cross-section averages (CA) and the CA of the change in registrations. Models 2

and 3 contain brand SI CAs at lags 2,4,5 and 6. Models 3 and 4 contain lags 0,3,6-9 and 11 of the scrappage SI and lags

0,9,11,12 of the scrappage SI CAs.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag x (p-values).

CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values) and statistic. Test restricted

to 149 sufficiently balanced product panels.
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Table A-11: CCE MG ECM Results for the UK, Weekly Data

(1) (2) (3) (4)

Error Correction Term

Product SI t−4 0.857∗ ∗ ∗ 0.987∗ ∗ ∗ 0.999∗ ∗ ∗ 0.958∗ ∗ ∗
(0.212) (0.222) (0.224) (0.225)

SR

Adjustment rate −0.898∗ ∗ ∗ −0.880∗ ∗ ∗ −0.880∗ ∗ ∗ −0.878∗ ∗ ∗
(Registrationst−4) (0.00696) (0.00763) (0.00763) (0.00766)

4̃ Product SI t−4 0.446∗∗ 0.518∗ ∗ ∗ 0.584∗ ∗ ∗ 0.583∗ ∗ ∗
(0.147) (0.151) (0.154) (0.161)

Brand SI t−25 −0.00592 −0.0502 −0.0387 −0.0284

(0.230) (0.237) (0.240) (0.237)

Scrappage SI t−16 0.0528 0.0718 0.0797 0.0548

(0.0683) (0.0761) (0.0751) (0.0691)

Registrationst−1 0.184∗ ∗ ∗ 0.159∗ ∗ ∗ 0.157∗ ∗ ∗ 0.154∗ ∗ ∗
(0.00788) (0.00854) (0.00856) (0.00858)

Registrationst−9 0.0649∗ ∗ ∗ 0.0826∗ ∗ ∗ 0.0821∗ ∗ ∗ 0.0830∗ ∗ ∗
(0.00635) (0.00683) (0.00683) (0.00688)

Registrationst−26 0.198∗ ∗ ∗ 0.176∗ ∗ ∗ 0.176∗ ∗ ∗ 0.177∗ ∗ ∗
(0.0106) (0.0104) (0.0105) (0.0105)

Constant −0.148 6.448 7.249 2.892

(13.71) (17.06) (17.26) (17.37)

CD Test 6.82 4.01 3.75 3.81

CD Test p 0.00 0.00 0.00 0.00

CH Test AR(1) 0.120 0.0518 0.0419 0.0452

CH Test AR(5) 0.0129 0.103 0.0753 0.122

CH Test AR(10) 0.00284 0.0214 0.0286 0.0602

CH Test AR(16) 0.0221 0.105 0.119 0.0757

Notes: ∗∗∗, ∗∗, ∗ denote significance at the 0.1%, 1%, 5% level. Time period 2004-2011. The sample contains

226 products with at least 3 months of consecutive sales and 52 weeks of positive sales. All models contain

lags 1-4,7,8,9,11,13-15,20-24,26,27 of registrations, lags 1-4,6-9,12-15,19,20,23,26,27 of registration

cross-section averages (CA) and the CA of the change in registrations. Models 2,3 and 4 contain brand SI

CAs at lags 2,7,8,9 and 10. Models 3 and 4 contain lags 3,8,12,16 and 20 of the scrappage SI and lags

1,3-6,10,16-19,21,23-27 of the scrappage SI CAs.

Diagnostics: CH (x) Test: Cumby and Huizinga (1992) test for H0 of no residual serial correlation at lag x (p-values).

CD Test: Pesaran (2004) test for H0 of cross-sectionally independent residuals, (p-values) and statistic. Test restricted

to 144 highly balanced product panels.
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