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Many host-parasite models assume that transmission increases linearly with host population density (‘density-
dependent transmission’), but various alternative transmission functions have been proposed in an effort to
capture the complexity of real biological systems. The most common alternative (usually applied to sexually
transmitted parasites) assumes instead that the rate at which hosts contact one another is independent of
population density, leading to ‘frequency-dependent’ transmission. This straight-forward distinction generates
fundamentally different dynamics (e.g. deterministic, parasite-driven extinction with frequency- but not density-
dependence). Here, we consider the situation where transmission occurs through two different types of contact,
one of which is density-dependent (e.g. social contacts), the other density-independent (e.g. sexual contacts).
Drawing on a range of biological examples, we propose that this type of contact structure may be widespread in
natural populations. When our model is characterized mainly by density-dependent transmission, we find that
allowing even small amounts of transmission to occur through density-independent contacts leads to the
possibility of deterministic, parasite-driven extinction (and lowers the threshold for parasite persistence).
Contrastingly, allowing some density-dependent transmission to occur in a model characterized mainly by
density-independent contacts (i.e. by frequency-dependent transmission) does not affect the extinction
threshold, but does increase the likelihood of parasite persistence.

The idea that directly transmitted parasites exploit different types of host contact is not new, but here we show
that the impact on dynamics can be fundamental even in the simplest cases. For example, in systems where
density-dependent transmission is normally assumed de facto, we show that parasite-driven extinction can occur
if a small amount of transmission occurs through density-independent contacts. Many empirical studies are still
guided by the traditional density/frequency dichotomy, but our combined transmission function may provide a
better model for systems in which both types of transmission occur.

A useful starting assumption in many host-parasite
models is that the rate of transmission increases linearly
with population density (Anderson and May 1979,
1981, McCallum et al. 2001). If transmission is direct,
this assumption will be valid if contacts between host
individuals increase proportionately with population
density. However, various refinements to this simple
framework have been proposed to capture the complex-
ity of biological systems. The simplest of these assumes
that the contact rate is independent of host population
density. For example, the rate at which individuals
acquire sexual contacts is often thought to remain

approximately constant as population density changes.
This is assumed to lead to ‘frequency-dependent’
transmission for sexually transmitted diseases (STDs)
(Getz and Pickering 1983, Anderson and May 1991,
Thrall et al. 1993, 1995). A similar argument can be
applied to vector-transmitted diseases, because relatively
large vector populations and vector biting behaviour may
compensate for changes in host density (Antonovics et al.
1995).

Although the distinction between density- and
frequency-dependence is straight-forward, fundamen-
tally different predictions concerning host-parasite
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equilibria apply in each case. For example, there is no
threshold density for parasite persistence in models that
assume complete frequency-dependence (Anderson and
May 1981, Getz and Pickering 1983, Lloyd-Smith et al.
2005). STDs may therefore be able to persist when host
population density is too low to allow ‘ordinary’
infectious diseases (OIDs), with density-dependent
transmission, to do so. Deterministic parasite-driven
host extinction is also possible with frequency-
dependent transmission (Getz and Pickering 1983,
Boots and Sasaki 2003). Extinction is only expected
to occur with density-dependent transmission if the
parasite reduces the size of or otherwise destabilizes its
host’s population (such that there is a higher risk of
stochastic events leading to extinction) or if the parasite
is shared by a more common ‘reservoir’ host (de Castro
and Bolker 2005). Finally, parasites cannot regulate
their host population independently in models based on
a frequency-dependent transmission term (Getz and
Pickering 1983).

The frequency-dependent model is generally applied
to animal-STD systems, because it is assumed that sexual
contact rate is independent of population density.
However, further modifications of the transmission
function allow for more complex departures from simple
density-dependence. For example, Antonovics et al.
(1995) modelled frequency- and density-dependence as
opposite ends of a continuum using the Holling type II
functional response. This assumption can lead to
transmission approximating density-dependence at low
densities and frequency-dependence as densities increase
(see also Thrall et al. 1995, Lockhart et al. 1996, Thrall
and Antonovics 1997, Thrall et al. 1998, McCallum
et al. 2001). Fenton et al. (2002) have also analysed non-
linear deviations from density-dependent transmission
using Hochberg’s (1991) phenomenological function,
which may provide a more realistic basis for approximat-
ing the contact structure of a range of biological systems.

In this study, we consider a further refinement of
the transmission function that is suggested by the
biology of many host-parasite systems. In particular, we
note that the transmission of infection often occurs
through more than one type of contact, each of which
may have a different functional relationship with
population density. Various factors at the level of
individual behaviour may give rise to such dynamics
(see also Thrall and Antonovics 1997, Thrall et al.
1998). For example, STDs may sometimes be trans-
mitted partly through social or other types of non-
sexual contact (Vitale et al. 2000, Cattani et al. 2003).
We envisage that there may be a component of density-
dependence in such cases, in addition to the expected
frequency-dependent transmission, because social/non-
sexual contacts will often be density-dependent. A
similar argument can be applied to OIDs. For example,
OIDs may commonly be transmitted during sexual

activity, leading to a component of frequency-
dependent transmission (Bastos et al. 1999).

Thus, our motivation in this paper is to examine the
simple case in which transmission occurs through two
different types of contact � one of which is density-
dependent, the other density-independent. Our ap-
proach is analogous to modelling scenarios along the
‘continuum’ between density- and frequency-depen-
dence. However, by using a combined linear function,
we make it explicit that transmission occurs through
two different types of contact. We analyse how the
thresholds between the parasite-driven host extinction,
endemic and disease-free equilibria vary as: (1) trans-
mission arising through density-dependent contacts
(e.g. social transmission) is gradually incorporated
into a system otherwise characterized by density-
independence (e.g. sexual transmission, frequency-
dependence); and (2) transmission arising through
density-independent contacts (i.e. frequency-depen-
dence) is gradually incorporated into a system charac-
terized mainly by density-dependent transmission.
Thus, our transmission function allows the level
of frequency- and density-dependence to be varied
independently, enabling us to model outcomes in a
range of systems (which we discuss with examples)
where elements of density- and frequency-dependent
transmission occur simultaneously. We illustrate how
our transmission function may be linked to empirical
systems.

The model and its biological context

Under the standard density-dependent model (and
assuming that the area occupied by the population is
fixed), the infection rate is given by vmNS(I=N);
where v is the per contact probability of transmission,
m is a constant which scales the total population density
(N) to give a density-dependent contact rate (mN), and
S and I are the densities of susceptible and infected
individuals (Begon et al. 2002). The probability that
any one contact is with an infected individual is given
by I/N. This formulation of the transmission function
is equivalent to the more familiar bSI; with vm
equating to the transmission coefficient, b. The
equivalent frequency-dependent model is vcS(I/N),
where c is a density-independent contact rate. This is
equivalent to the b?SI/N term commonly used for
STDs, where vc equates to the corresponding transmis-
sion coefficient, b? (Begon et al. 2002).

In these two formulations of the transmission
function, vmNS(I/N) and vcS(I/N), the contact rates
are given by mN and c, respectively. We now assume
that transmission can be described by a function that
combines these two types of contacts:

2018



v(c � mN)SI

N
(1)

The rate at which effective contacts are acquired is thus
modelled simply as c�mN, rather than the traditional
mN (density-dependence) or c (frequency-dependence).

A clear demonstration of the biological meaning of
this function comes from the familiar dichotomy
between STDs and OIDs, to which we referred in the
preceding section. STD transmission is generally
modelled using a frequency-dependent formulation
(i.e. b?SI/N). From the above argument this is
equivalent to setting m�0 in Eq. 1, which reduces to
vcS(I/N) with c�0 (i.e. sexual contact rate is positive).
If we now allow some transmission to occur through
additional density-dependent contacts (e.g. social con-
tacts), such that m�0, then it clear that Eq. 1 will
provide a more realistic description of the transmission
dynamics than either of the standard linear terms.
Similarly, considering again the example we gave in the
preceding section concerning the sexual transmission of
OIDs, it can be seen that the effect of density-
independent (sexual) contacts can be included by
setting c�0.

The occurrence of behaviourally distinct types of
contact between hosts (e.g. sexual vs non-sexual/social
contacts) provides a useful illustration of the biological
meaning of Eq. 1. We also note that combined
transmission dynamics may arise through heterogene-
ities in the relationship of one specific type of contact
with population density. The relatively simple host
behaviour demonstrated in some invertebrate-STD
systems provides an example. Male A. bipunctata
ladybirds mate promiscuously, but females can control
their own mating rate by resisting unwanted copulation
attempts (Webberley et al. 2002). The transmission of a
sexually transmitted mite Coccipolipus hippodamiae
found in these beetles may contain elements of both
frequency- and density-dependence (Ryder et al. 2005,
Webberley et al. 2006) because, at any one point in
time, only a proportion of the females in a population
may demonstrate such resistance. These females may
therefore mate at a fixed rate (leading to frequency-
dependent transmission), whereas females that continue
to mate promiscuously will generate sexual contacts at a
density-dependent rate (leading to density-dependent
transmission). The combined linear function (Eq. 1)
provides a simple means of modelling this type of
heterogeneity.

A similar form of heterogeneity may lead to
combined transmission dynamics in vertebrate systems.
For example, a number of studies have demonstrated
that the rate of extra-pair copulations (EPCs) in birds
increases with population density (Hatchwell 1988,
Brown and Brown 1996). Females may thus mate at a
density-independent rate with their partner, but engage

in more extra-pair copulations at higher population
densities (i.e. density-dependent extra-pair sexual con-
tacts). This increase in promiscuity will introduce at
least a component of density dependence to the
transmission dynamics of any STD present.

Our contention is that whether one is interested in
either STD or OID transmission dynamics, Eq. 1
allows transmission arising through contacts that might
otherwise be considered of negligible importance (and
thus be neglected) to be incorporated explicitly. Our
interest is in exploring the implications of doing so for
host-parasite equilibria. The parameters c and m
determine the amount of frequency- and density-
dependent transmission, respectively. Assuming c�0,
transmission approaches complete frequency-depen-
dence as m00, and assuming that m�0, transmission
approaches complete density-dependence as c00. If we
say that vm�b and that vc�b? then it can be seen that

v(c � mN)SI

N
�

b?SI

N
�bSI (2)

This is useful from an empirical perspective, because it
is reasonably straight forward to estimate both trans-
mission coefficients by carrying out appropriate experi-
ments (depending, of course, on the particular system),
making it possible to estimate the relative amount of
each type of transmission in natural systems (Ryder
et al. 2005).

Analytically, the question that we are attempting to
address is: how do deviations from ‘pure’ density- or
pure frequency-dependence affect dynamics? We there-
fore consider a situation where the dynamics are
described by the following equations:

dS

dt
�(b�hN)N�

v(c � mN)SI

N
�uS (3)

dI

dt
�

v(c � mN)SI

N
�(u�a)I (4)

We assume that susceptible and infected individuals
reproduce at the same rate (i.e. there are no sterility
effects associated with infection). The birth and natural
death rates are b and u respectively, a is the rate of
disease-induced mortality (i.e. virulence), and h is a
coefficient of density-dependent host regulation. Here
the carrying capacity is given by K�r/h, where r�
b�u, the intrinsic growth rate of the host population.
There is no host recovery, and all parameters are
assumed to be positive.

To simplify the analysis, we make the substitutions
N�S�I and p�I/N. The equations can then be
rewritten in terms of the total host density (N) and the
prevalence of infection (p):
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dN

dt
�(b�hN)N�uN�apN (5)

dp

dt
�p[v(c�mN)(1�p)�(b�hN)�a(1�p)] (6)

As will be shown, this substitution allows a more
intuitive explanation of the equilibrium states.

Analysis

The analytical results are derived in Appendix 1. For
positive parameters, there are three non-trivial and

biologically feasible equilibrium states for Eq. 5�6. In
the first equilibrium the parasite is unable to invade the
host population, which settles at its uninfected carrying
capacity, NK�(b�u)/h. In the second, the dynamics
reach a stable endemic equilibrium where the parasite is
maintained at a constant prevalence (N*, p*). In the
third equilibrium state, the parasite drives the host to
extinction. These results are illustrated in Fig. 1, in
which the (v, a) parameter space is partitioned into
regions where we observe the three outcomes. The
equilibrium regions are delineated by two thresholds in
infection probability, vt and vc. The threshold vt gives
the minimum infection probability for persistence of
the parasite and delineates the boundary between the

Fig. 1. Outcomes in (v, a) parameter space for different levels of frequency- and density-dependence: (a) m�0, c�0; (b)
m�7, c�0; (c) m�10, c�0; (d) m�0, c�7; (e) m�7, c�7; (f) m�10, c�7; (g) m�0, c�10; (h) m�7, c�10; (i)
m�10, c�10. The other parameters are: b�2, u�1 and h�1. The carrying capacity is NK�1.
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disease-free and endemic regions:

vt�
u � a

c � (m(b � u)=h)
(7)

A disease-free equilibrium thus requires that vBvt. This
threshold increases with virulence (a); a more virulent
parasite requires higher infection probability to be able
to persist in the population. The upper threshold, vc,
delineates the boundary between the endemic and
extinction regions:

vc�
a(u � a)

c(a� b � u)
(8)

This gives the minimum infection probability necessary
for the parasite to drive the host to extinction (v�vc).
For host-parasite coexistence to occur, we therefore
require an intermediate probability, vtBvBvc. From
Eq. 8, below a certain level of virulence (aBb�u)
there is no possibility of extinction, since births
outweigh deaths. Above this level, there is a non-
monotonic relationship between virulence (a) and the
infection probability (v) required to cause extinction.
Thus, at low virulence, reproduction from infecteds
provides a mechanism that reduces the cost of parasit-
ism, and extinction can only occur if the infection
probability is high. Extremely virulent parasites are also
unlikely to cause extinction, because infected hosts die
very rapidly, reducing the opportunities for transmis-
sion (Fig. 1). It can be shown analytically that if
infecteds are unable to reproduce, the Eq. 7 for parasite
persistence is unchanged. However, the condition for
parasite-driven extinction reduces to the criterion (A4),
which merely requires that the frequency-dependent
transmission rate, vc, exceed a certain value. This result
is analogous to that obtained for a purely frequency-
dependent model: allowing reproduction from infected
individuals reduces the probability of extinction (Boots
and Sasaki 2003).

We now consider the effect of independently varying
the amount of frequency- and density-dependence, by
allowing the values of c and m to vary. Figure 1
illustrates the effect of varying either m or c whilst the
other is held constant.

Probability of parasite persistence

Increasing m from 0 to 10, with c fixed at 10 (i.e.
moving from complete frequency-dependence to both
frequency- and density-dependence), has the effect
of reducing the region of disease-free parameter space
(Fig. 1g01h01i). Thus, by adding an increasing
component of density-dependent transmission, parasite
persistence becomes possible at lower infection prob-
abilities for a given level of virulence. It is also clear that

the relative decrease in the disease-free region with
increasing m is more pronounced when c is 7
(Fig. 1d01e01f) than when c is 10.

Similarly, moving from complete density-depen-
dence to both frequency- and density-dependence
(increasing c from 0 to 10, with m fixed at 10,
Fig. 1c01f01i) reduces the size of the disease-free
region (i.e. the addition of frequency-dependent trans-
mission allows the parasite to persist at lower infection
probabilities). Likewise, the relative decrease in the
disease-free region with increasing c is more pro-
nounced when m is 7 (Fig. 1b01e01h) than when
m is 10.

Probability of parasite-driven extinction

The boundary of the parasite-driven host extinction
region is unaffected by variation in m: increasing the
amount of density-dependence does not affect this
equilibrium (e.g. Fig. 1g01h01i). In contrast, both
the existence and size of the parasite-driven extinction
region depends on c. When c�0 (pure density-
dependence, with m�7 or m�10), parasite-driven
extinction cannot occur and the endemic region is
unbounded for increasing values of v (Fig. 1b�c). When
a component of frequency-dependence is introduced,
parasite-driven extinction becomes possible at high
infection probabilities (Fig. 1d�f). Further increases in
c lower the upper boundary of the endemic region,
making extinction possible for a lower infection
probability (Fig. 1g�1i).

Probability of endemic persistence

Higher levels of density-dependent transmission always
increase the probability of endemic persistence, by
lowering the boundary between the endemic and
disease-free regions in (v, a) parameter space. In
contrast, higher levels of frequency-dependent transmis-
sion often reduce the probability of endemic persis-
tence, particularly if the amount of density-dependent
transmission is high (Fig. 1f01i). In fact, the prob-
ability of endemic persistence may actually decrease if c
and m increase at the same rate (Fig. 1e01i). However,
if frequency-dependent transmission increases from low
(or zero) to only moderate levels, this may result in an
overall increase in the probability of endemic persis-
tence (Fig. 1b01e). The ambiguity here is due to the
fact that increasing c lowers the threshold for parasite
persistence but also the threshold for parasite-driven
extinction.

Figure 2 summarizes these results by plotting the
disease-free, endemic and parasite-driven host extinc-
tion regions in (m, c) parameter space. As the value of
m increases, the endemic region expands at the expense
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of the disease-free space, making parasite persistence
attainable for a smaller component of frequency-
dependence (vt occurs at decreasing values of c as m
increases). However, increasing the amount of density-
dependence (m) has no effect on the parasite-driven
extinction region (vc occurs at the same value with
respect to c for varying m). Conversely, for any given
value of m, the amount of frequency-dependence (c)
determines whether the population is in disease-free,
endemic or parasite-driven extinction parameter space.
The addition of frequency-dependence may therefore
allow parasites with principally density-dependent
transmission to persist in regions of parameter space
where they would otherwise go extinct. On the other
hand, a sufficiently high level of frequency-dependence
can cause the extinction of both host and parasite
deterministically.

Discussion

The view that transmission dynamics will often be too
complex to characterize using the traditional density/
frequency dichotomy seems widely accepted (Hochberg
1991, Antonovics et al. 1995, Lockhart et al. 1996,
Thrall and Antonovics 1997, Thrall et al. 1998,
McCallum et al. 2001, Begon et al. 2002, Fenton et al.
2002). Therefore, it is important that the consequences
of intermediate forms of transmission for host-parasite
equilibria are fully explored (Fenton et al. 2002), because
the population outcomes associated with the two
traditional models are fundamentally different. In
particular, in systems where pure frequency-dependent

transmission is assumed, deterministic, parasite-driven
extinction can occur (Getz and Pickering 1983, Boots
and Sasaki 2003). In addition, host-parasite coexistence
is only possible in frequency-dependent models if the
host population experiences density-dependent mortal-
ity independently of any disease-related factors (Getz and
Pickering 1983, Thrall et al. 1993, Lockhart et al. 1996).
In contrast, parasites with density-dependent transmis-
sion can regulate the host population even if there is no
density-dependent mortality, and have threshold
densities for persistence (Anderson and May 1981,
Lloyd-Smith et al. 2005).

Our model incorporates a combined, linear func-
tion, such that transmission can occur through two
distinct types of contact, one of which is density-
dependent, the other density-independent. When trans-
mission follows simple frequency-dependence (and
incorporates a density-dependent host birth rate),
host-parasite coexistence is possible for intermediate
infection probabilities. Parasite-driven host extinction
can also occur if the infection probability rises above the
extinction threshold, vc. If we allow (variable amounts
of) frequency- and density-dependent transmission to
occur simultaneously, then increasing the amount of
density-dependent transmission (i.e. m�0) has no
effect on the position of vc, which depends only on
the frequency-dependent parameter, c. However, in-
creasing the amount of density-dependence lowers the
boundary between the endemic and disease-free regions
(vt). Thus, if c is fixed, the probability of endemic
persistence increases with the strength of density-
dependent transmission (m). Conversely, when
frequency-dependence is incorporated into a density-
dependent model, there is a reduction in the size of the
disease-free region, and parasite-driven extinction be-
comes possible if the infection probability is high
enough. As c is increased further (for fixed m), the
extinction equilibrium becomes stable for lower values
of v, constraining the region within which coexistence is
possible.

Our most important conclusions are as follows.
First, in host-parasite systems where transmission is
normally assumed to be density-dependent, parasite-
driven extinction may be possible if even a small
amount of transmission occurs through contacts occur-
ring at a density-independent rate (i.e. there is some
frequency-dependent transmission). OIDs are generally
only implicated in extinctions if they reduce the size of,
or otherwise destabilize, their host’s population, such
that there is a higher risk of stochastic events leading to
extinction (Ebert et al. 2000). Alternatively, if OIDs are
shared by two hosts, one of which is a reservoir for the
parasite while the other is at a low density, there is also a
possibility of extinction (de Castro and Bolker 2005).
If, however, transmission is in reality only ‘mostly’
density-dependent in such cases, and also partly

Fig. 2. Outcomes in (c, m) parameter space: b�2, u�1,
h�1, v�0.7 and a�2.5. The carrying capacity is NK�1.
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frequency-dependent (e.g. due to additional sexual
transmission), then deterministic extinction may also
be possible. This finding has broad significance. Many
OIDs will have some component of frequency-
dependent transmission and even a small degree may
be sufficient to place a population above vc. Parasites
have been implicated in the extinction of their host a
number of times, including the extinction of the
Thylacine, a carnivorous marsupial (McCallum and
Dobson 1995), populations of African wild dogs
(Burrows et al. 1995), and some amphibian species
(Daszak and Cunningham 1999). Our results indicate
that a parasite will be even more likely to cause
extinction if some transmission takes place through
density-independent contacts. From Eq. 8, it is clear
that this finding is unaffected by the strength of non-
disease density-dependence (h). Intriguingly, recent
experimental work on an amphibian-chytrid system
detected significant components of both frequency- and
density-dependent transmission (T. Garner, pers.
comm.). Given that Batrachochytrium dendrobatidis
has been implicated in the extinction of numerous
amphibian species worldwide (Garner et al. 2005,
2006, Pounds et al. 2006), our analysis highlights the
potential danger of overlooking frequency-dependence.

Second, we find that the threshold for parasite
persistence reduces as frequency-dependent transmis-
sion becomes more important � even where the amount
of density-dependent transmission is fixed. This result is
also surprising, because frequency-
dependence is not usually associated with an increased
likelihood of parasite persistence (Getz and Pickering
1983, Thrall et al. 1993, Lockhart et al. 1996).

Third, in a host-parasite system otherwise character-
ized by frequency-dependence, increasing the amount
of density-dependent transmission does not affect the
threshold for parasite-driven extinction, although it
does lower the threshold for persistence. It is not
surprising that density-dependence is associated with an
increased probability of host-parasite coexistence. How-
ever, it is striking that the extinction threshold is
governed only by the amount of transmission that takes
place through density-independent contacts (i.e. fre-
quency-dependent transmission).

There is currently very little suitable data with which
our model can be tested, but as was shown above, the
combined transmission function can be converted to a
form that should facilitate in estimating the two
transmission coefficients, b and b? (Eq. 2). We recently
used this approach (Ryder et al. 2005) to estimate
the relative contribution of density- and frequency-
dependent transmission in an animal-STD system in
which previous studies had assumed frequency-
dependent dynamics (Webberley et al. 2004, 2006).
The coefficients were estimated experimentally, using a
range of host densities, by fitting the model to data on

the proportion of individuals that became infected
within a set period. Surprisingly, the transmission data
were best explained by the standard density-dependent
term alone (i.e. bSI), although we anticipate that a
larger sample size would have detected a component of
frequency-dependence (Ryder et al. 2005). The dy-
namics of this system in the field are complex
(Webberley et al. 2006), but our model may help to
explain why coexistence is possible despite regular
epidemics of infection, because density-dependent
transmission should increase the probability of endemic
persistence, particularly at high density (Eq. 7).

We know of no data on the relationship between
STD transmission and population density in other
animal-STD systems, but numerous studies have
reported relationships between mating rate and popula-
tion density (reviewed by Ryder et al. 2005). Where
STDs are present in such cases, it seems probable that at
least some transmission will take place through contacts
that vary with population density (e.g. EPCs in birds;
and density-dependent variation in mating rate in
insects: Harshman et al. 1988, Gage 1995). Density-
dependent changes in mating rate are also likely in
higher vertebrate groups, such as red deer (Clutton-
Brock et al. 1997). We emphasize that what is currently
lacking in all of these taxa is empirical data on the
relationship between STD transmission and population
density. The frequency-dependent model has proven
particularly useful in a plant-STD system, Silene alba
infected with anther-smut fungus (Thrall and Jarosz
1994a, 1994b, Thrall et al. 1995). However, animal-
STD systems are extraordinarily diverse (Lockhart et al.
1996, Knell and Webberley 2004) and the various
studies we cite above suggest that many systems will
exhibit components of both density- and frequency-
dependence.

When considering human diseases, social factors
such as fixed class sizes in childhood may lead to a
substantial frequency-dependent component to trans-
mission dynamics (Bjørnstad et al. 2002). Although this
may mean that some childhood diseases, for example,
have elements of both types of transmission, further
analysis of our model indicates that the effectiveness of
vaccination programmes should be unaffected. In short,
although vaccination reduces the proportion of the
population that is susceptible, this will affect the
probability of transmission in the same way whether
contacts are density-dependent or density-independent.
Similarly, if we allow for recovery in our model, the
threshold for disease persistence is reduced, but this
affects density- and frequency-dependent transmission
equally.

Our results may also be relevant in light of recent
work on the evolutionary dynamics of sexual (frequency-
dependent) versus nonsexual (density-dependent)
transmission modes (Thrall and Antonovics 1997, Thrall
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et al. 1998). Generally speaking, sexual transmission is
predicted to evolve in response to low population
densities and non-sexual transmission in response to
high densities. Indeed, frequency-dependent (i.e. sexual)
transmission modes are often thought to have evolved as
a mechanism enabling pathogens to survive in smaller
populations, an idea which has considerable empirical
support (Lockhart et al. 1996). This is corroborated
by our results, which indicate that highly frequency-
dependent pathogens are more likely to persist at lower
carrying capacities. However, as frequency-dependent
transmission may lead to extinction of both host and
pathogen, a significant component of density-dependent
transmission may often be preserved in smaller popula-
tions.

In summary, our combined transmission function
provides a basis for modelling dynamics in the simple,
but important case where transmission occurs through
two distinct types of contact that each have a different
functional relationship with population density � one
density-dependent, the other density-independent. As
the number of reported cases of animal STDs continues
to increase (Lockhart et al. 1996, Knell and Webberley
2004), we believe that this approach will help to
encourage the integration of theoretical and empirical
approaches to STD ecology. Similarly, we hope that our
model will stimulate further research on the ecological
dynamics of diseases normally assumed to have purely
density-dependent transmission. In particular, our
results show that the likelihood of host extinction
may be increased if even a small amount of transmission
occurs through density-independent contacts.
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Appendix 1.

There are four equilibrium solutions of Eq. 5�6. Taking
the variables in the order (N, p), the equilibria are (0,0),
(NK, 0), (0,rE) and (N*,p*). The relevance and stability
of the equilibrium values are determined below.

(1) The trivial equilibrium, (0, 0) has Jacobian
matrix:

b�u 0
0 �b�a�cv

� �
(A1)

Assuming the birth rate (b) exceeds the natural death

rate (u), the eigenvalue l1�b�u will be positive and
the equilibrium is unstable.

(2) At the disease-free equilibrium (NK, 0), the
population reaches its carrying capacity, NK�(b�u)/
h. The associated Jacobian matrix is:

�b�u
(�b � u)a

h

0 �u�a�
�

c�
m(b � u)

h

�
v

0
BBB@

1
CCCA (A2)

The first eigenvalue, l1��b�u, is negative. Stability
therefore depends upon the other eigenvalue, l2�
�u�a�(c�m(b�u)/h)v, having negative sign.
This condition can be expressed as:

vB
u � a

c � (m(b � u)=h)
�vt (A3)

Thus, if v�vt then the parasite is able to invade the
uninfected host population. Note that increasing either
c or m will reduce vt.

(3) The parasite-driven extinction equilibrium (0,rE)
is defined by N�0 and pE�1�b/(vc�a). The
equilibrium is feasible provided:

vc�b�a (A4)

The associated Jacobian matrix is:

�u�a�
bcv

�a� cv
0

�
1�

b

a� cv

��
h�

bmv

�a� cv

�
b�a�cv

0
BBB@

1
CCCA

(A5)

The second eigenvalue is given by l2�(b�a)�cv,
which is negative provided the relevance criterion A4 is
satisfied. The other eigenvalue is l1��u�a�bcv/
(�a�cv). The condition for a stable equilibrium can
therefore be expressed as:

v�
a(u � a)

c(a� b � u)
�vc (A6)

Note that Eq. A6 requires that a�b�u�r.
(4) The endemic equilibrium (N*,p*) is defined by

N*�
�Fc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

c � 4vmhuc

q
2vmh

;

p*�
Ft �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

t � 4vmaut

q
2vma

(A7)

Here Fc�v(ch�ma�m(b�u)), Ft�v(ch�ma�
m(b�u)), uc�vcb�vcu�a(a�u)�vca and ut�
vch�ha�vmb�vmu�uh. Assuming r�b�u�0
we know that Ft�0. For p*�0 we therefore require
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ut�0, which is the same as v�vt (Eq. A3). To obtain
N*�0 there are two possibilities. If a�r then Fc�0
and we require uc�0, which is the same as vBvc

(Eq. A6). If aBr then uc�0 is always true and so
N*�0. Therefore (N,p)�(N*,p*) is feasible if:

vtBvBvc (A8)

The associated Jacobian matrix is

�hN* �aN*
p*(vm(1�p*)�h �p*v(c�mN*)�ap*

� �
(A9)

It can be shown that this matrix has negative trace and
positive determinant, provided 0BN*BNk and
0Bp*B1. Thus, whenever the equilibrium (N*,p*) is
feasible it is also stable. This requires that vtBvBvc.
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